AiM  Vol.4 No.7 , May 2014
Self-Assembly of Escherichia coli Phage Shock Protein A
Abstract: The Phage shock protein (Psp) response is an extracytoplasmic stress response. The central component of this system is PspA, a protein that mediates the physiological response to membrane stress. PspA is also involved in regulating its own transcription and that of the psp operon, forming a positive feedback loop. PspA has been previously shown to oligomerise into higher-order species, including a 36-meric species with ring-like structure. In this study, we demonstrate that the ring-like PspA structures further self-assemble into rod-shaped complexes. These rod-like structures may play a scaffolding role in the maintenance of membrane integrity during phage shock protein response.
Cite this paper: Male, A. , Oyston, P. and Tavassoli, A. (2014) Self-Assembly of Escherichia coli Phage Shock Protein A. Advances in Microbiology, 4, 353-359. doi: 10.4236/aim.2014.47042.

[1]   Brissette, J.L., Russel, M., Weiner, L. and Model, P. (1990) Phage Shock Protein, a Stress Protein of Escherichia-coli. Proceedings of the National Academy of Sciences, 87, 862-866.

[2]   Kleerebezem, M., Crielaard, W. and Tommassen, J. (1996) Involvement of Stress Protein PspA (Phage Shock Protein A) of Escherichia coli in Maintenance of the Protonmotive Force under Stress Conditions. The EMBO Journal, 15, 162-171.

[3]   Brissette, J.L., Weiner, L., Ripmaster, T.L. and Model, P. (1991) Characterization and Sequence of the Escherichia coli stress-Induced psp Operon. Journal of Molecular Biology, 220, 35-48.

[4]   Weiner, L and Model, P. (1994) Role of an Escherichia-coli Stress-Response Operon in Stationary-Phase Survival. Proceedings of the National Academy of Sciences, 91, 2191-2195.

[5]   Kobayashi, H., Yamamoto, M. and Aono, R. (1998) Appearance of a Stress-Response Protein, Phage-Shock Protein A, in Escherichia coli Exposed to Hydrophobic Organic Solvents. Microbiology-(UK), 144, 353-359.

[6]   Darwin, A.J. and Miller, V.L. (2001) The psp Locus of Yersinia enterocolitica Is Required for Virulence and for Growth in Vitro When the Ysc Type III Secretion System Is Produced. Molecular Microbiology, 39, 429-444.

[7]   Jones, S.E., Lloyd, L.J., Tan, K.K. and Buck, M. (2003) Secretion Defects That Activate the Phage Shock Response of Escherichia coli. Journal of Bacteriology, 185, 6707-6711.

[8]   DeLisa, M.P., Lee, P., Palmer, T. and Georgiou, G. (2004) Phage Shock Protein PspA of Escherichia coli Relieves Saturation of Protein Export via the Tat Pathway. Journal of Bacteriology, 186, 366-373.

[9]   Kleerebezem, M. and Tommassen, J. (1993) Expression of the pspA Gene Stimulates Efficient Protein Export in Escherichia coli. Molecular Microbiology, 7, 947-956.

[10]   Weiner, L., Brissette, J.L. and Model, P. (1991) Stress-Induced Expression of the Escherichia coli Phage Shock Protein Operon Is Dependent on Sigma 54 and Modulated by Positive and Negative Feedback Mechanisms. Genes & Development, 5, 1912-1923.

[11]   Jovanovic, G., Dworkin, J. and Model, P. (1997) Autogenous Control of PspF, a Constitutively Active Enhancer-Binding Protein of Escherichia coli. Journal of Bacteriology, 179, 5232-5237.

[12]   Green, R.C. and Darwin, A.J. (2004) PspG, a New Member of the Yersinia enterocolitica Phage Shock Protein Regulon. Journal of Bacteriology, 186, 4910-4920.

[13]   Lloyd, L.J., Jones, S.E., Jovanovic, G., Gyaneshwar, P., Rolfe, M.D., et al. (2004) Identification of a New Member of the Phage Shock Protein Response in Escherichia coli, the Phage Shock Protein g (PspG). The Journal of Biological Chemistry, 279, 55707-55714.

[14]   Engl, C., Jovanovic, G., Lloyd, L.J., Murray, H., Spitaler, M., et al. (2009) In vivo Localizations of Membrane Stress Controllers PspA and PspG in Escherichia coli. Molecular Microbiology, 73, 382-396.

[15]   Elderkin, S., Jones, S., Schumacher, J., Studholme, D. and Buck, M. (2002) Mechanism of Action of the Escherichia coli Phage Shock Protein PspA in Repression of the AAA Family Transcription Factor PspF. Journal of Molecular Biology, 320, 23-37.

[16]   Joly, N., Burrows, P.C., Engl, C., Jovanovic, G. and Buck, M. (2009) A Lower-Order Oligomer Form of Phage Shock Protein A (PspA) Stably Associates with the Hexameric AAA(+) Transcription Activator Protein PspF for Negative Regulation. Journal of Molecular Biology, 394, 764-775.

[17]   Elderkin, S., Bordes, P., Jones, S., Rappas, M. and Buck, M. (2005) Molecular Determinants for PspA-Mediated Repression of the AAA Transcriptional Activator PspF. Journal of Bacteriology, 187, 3238-3248.

[18]   Kobayashi, R., Suzuki, T. and Yoshida, M. (2007) Escherichia coli Phage-Shock Protein A (PspA) Binds to Membrane Phospholipids and Repairs Proton Leakage of the Damaged Membranes. Molecular Microbiology, 66, 100-109.

[19]   Hankamer, B.D., Elderkin, S.L., Buck, M. and Nield, J. (2004) Organization of the AAA(+) Adaptor Protein PspA Is an Oligomeric Ring. The Journal of Biological Chemistry, 279, 8862-8866.

[20]   Standar, K., Mehner, D., Osadnik, H., Berthelmann, F., Hause, G., et al. (2008) PspA Can Form Large Scaffolds in Escherichia coli. FEBS Letters, 582, 3585-3589.

[21]   Wolf, D., Kalamorz, F., Wecke, T., Juszczak, A., Mader, U., et al. (2010) In-Depth Profiling of the LiaR Response of Bacillus subtilis. Journal of Bacteriology, 192, 4680-4693.

[22]   Li, H.M., Kaneko, Y. and Keegstra, K. (1994) Molecular Cloning of a Chloroplastic Protein Associated with Both the Envelope and Thylakoid Membranes. Plant Molecular Biology, 25, 619-632.

[23]   Kroll, D., Meierhoff, K., Bechtold, N., Kinoshita, M., Westphal, S., et al. (2001) VIPP1, a Nuclear Gene of Arabidopsis thaliana Essential for Thylakoid Membrane Formation. Proceedings of the National Academy of Sciences, 98, 4238-4242.

[24]   Liu, C., Willmund, F., Golecki, J.R., Cacace, S., Hess, B., et al. (2007) The Chloroplast HSP70B-CDJ2-CGE1 Chaperones Catalyse Assembly and Disassembly of VIPP1 Oligomers in Chlamydomonas. The Plant Journal, 50, 265-277.

[25]   Fuhrmann, E., Bultema, J.B., Kahmann, U., Rupprecht, E., Boekema, E.J. and Schneider, D. (2009) The Vesicle-Inducing Protein 1 from Synechocystis sp. PCC 6803 Organizes into Diverse Higher-Ordered Ring Structures. Molecular Biology of the Cell, 20, 4620-4628.

[26]   Westphal, S., Heins, L., Soll, J. and Vothknecht, U.C. (2001) Vipp1 Deletion Mutant of Synechocystis: A Connection between Bacterial Phage Shock and Thylakoid Biogenesis? Proceedings of the National Academy of Sciences, 98, 4243-4248.

[27]   Bultema, J.B., Fuhrmann, E., Boekema, E.J. and Schneider, D. (2010) Vipp1 and PspA: Related but Not Twins. Communicative & Integrative Biology, 3, 162-165.

[28]   Aseeva, E., Ossenbuhl, F., Eichacker, L.A., Wanner, G., Soll, J. and Vothknecht, U.C. (2004) Complex Formation of Vipp1 Depends on Its Alpha-Helical PspA-Like Domain. The Journal of Biological Chemistry, 279, 35535-35541.

[29]   Aseeva, E., Ossenbuhl, F., Sippel, C., Cho, W.K., Stein, B., et al. (2007) Vipp1 Is Required for Basic Thylakoid Membrane Formation but Not for the Assembly of Thylakoid Protein Complexes. Plant Physiology and Biochemistry, 45, 119-128.

[30]   Yamaguchi, S., Reid, D.A., Rothenberg, E. and Darwin, A.J. (2013) Changes in Psp Protein Binding Partners, Localization and Behaviour upon Activation of the Yersinia enterocolitica Phage Shock Protein Response. Molecular Microbiology, 87, 656-671.

[31]   Savva, C.G., Dewey, J.S., Deaton, J., White, R.L., Struck, D.K., et al. (2008) The Holin of Bacteriophage Lambda Forms Rings with Large Diameter. Molecular Microbiology, 69, 784-793.