[1] Jackson, C.P., Andrew, R.H. and Todman, S. (2000) Self-Consistency of Heterogeneous Continuum Porous Medium Representation of a Fractured Medium. Water Resources Research, 36, 189-202. http://dx.doi.org/10.1029/1999WR900249
[2] Sahimi, M. (1995) Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. VCH., Weinheim, 482pp.
[3] Hartley, L. and Joyce, S. (2013) Approaches and Algorithms for Groundwater Flow Modeling in Support of Site Investigations and Safety Assessment of the Forsmark Site, Sweden. Journal of Hydrology.
[4] Svensson, U., Ferry, M. and Kuylenstierna, H.-O. (2010) DarcyTools, Version 3.4. Concepts, Methods and Equations. SKB R-10-70, Svensk K?rnbr?nslehantering AB. 144pp.
[5] Svensson, U. and Ferry, M. (2010) DarcyTools, Version 3.4. User’s Guide. SKB R-10-72, Svensk K?rn-br?nslehantering AB.
[6] Svensson, U. (2010) DarcyTools, Version 3.4. Verification, Validation and Demonstration. 2010, SKB R-10-71, Svensk K?rnbr?nslehantering AB.
[7] Pruess, K. (1991) TOUGH2 a General-Purpose Numerical Simulator for Multiphase Fluid and Heat Flow. Report, LBNL-29400, Lawrence Berkeley Laboratory, Berkeley, Ca.
[8] McDonald, M.G. and Harbaugh, A.W. (1988) A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. 1988, U.S. Geol. Surv. Tech. Water Resour. Invest. Book 6, Chap. 2.
[9] Hammond, G.E. and Lichtner, P.C. (2010) Field-Scale Model for the Natural Attenuation of Uranium at the Hanford Area Using High-Performance Computing. Water Resources Research, 46, WO9527. http://dx.doi.org/10.1029/2009WR008819
[10] Dershowitz, W., Lee, G., Geier, J., Foxford, T. and Ahlstrom, E. (1999) FracMan Interactive Discrete Feature Data Analysis, Geometric Modeling, and Exploration Simulation. User Docu-mentation, Version 2.6, Golder Associates Inc.
[11] Bian, H.B., Jia, Y., Amand, G., Duveau, G. and Shao, J.F. (2012) 3D Numerical Modeling Thermo-Hydromechanical Behavior of Underground Storages in Clay Rock. Tunnelling and Underground Space Technology, 30, 93-109. http://dx.doi.org/10.1016/j.tust.2012.02.011
[12] Haggerty, R. and Gorelick, S.M. (1995) Multiple-Rate Mass Transfer for Modeling Diffusion and Surface Reaction in Media with Pore-Scale Heterogeneity. Water Resources Research, 31, 2383-2400. http://dx.doi.org/10.1029/95WR10583
[13] Svensson, U. (2001) A Continuum Representation of Fracture Networks. Part I: Method and Basic Test Cases. Journal of Hydrology, 250, 170-186. http://dx.doi.org/10.1016/S0022-1694(01)00435-8
[14] Svensson, U. (2001) A Continuum Representation of Fracture Networks. Part II: Application to the ?sp? Hard Rock Laboratory. Journal of Hydrology, 250, 187-205. http://dx.doi.org/10.1016/S0022-1694(01)00436-X
[15] Diskin, B., Thomas, J.L., Nielsen, E.J., Nishikawa, H. and White, J.A. (2010) Comparison of Node-Centered and Cell- Centered Unstructured Finite-Volume Discretizations: Viscous Fluxes. American Institute of Aeronautics and Astronautics, 48.
[16] Spalding, D.B. (1972) A Novel Finite Difference Formulation for Differential Expressions Involving Both First and Second Derivatives. International Journal for Numerical Methods in Engineering, 4, 551-559. http://dx.doi.org/10.1002/nme.1620040409
[17] Roache, P.J. (1976) Computational Fluid Dynamics. Hermosa Publs., Albuquerque, 446pp.
[18] Aftosmis, M.J., Berger, M.J. and Melton, J.E. (1999) Adaptive Cartesian Mesh Generation. In: Thompson, J.F., Soni, B.K. and Weatherill, N.P., Eds., Handbook of Grid Generation, CRC Press, Boca Raton, 1136pp.
[19] Saad, Y. and Schultz, M.H. (1996) GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal of Scientific and Statistical Computing, 7, 856-869.
[20] Stüben, K. and Trottenberg, U. (1982) Multigrid Methods: Fundamental Algorithms, Model Problem Analysis and Applications. Mul-tigrid Methods, Lecture Notes in Mathematics, 960, 176.
[21] Stüben, K. (2001) Algebraic Multigrid (AMG): An In-troduction with Applications. In: Trottenberg, U., Oosterlee, C. and Schüller, A., Eds., Multigrid, Academic Press, London,
[22] Ferry, M. (2002) New Features of MIGAL Solver. 9th International PHOENICS Users Conference, Moscow.
[23] Aftosmis, M.J., Berger, M.J. and Murman, S.M. (2004) Applications of Space-Filling Curves to Carte-sian Methods for CFD. 42nd AIAA, Aerospace Sciences Meeting and Exhibition, Chapter.
[24] Sagan, H. (1994) Space Filling Curves. Springer-Verlag, 193pp. http://dx.doi.org/10.1007/978-1-4612-0871-6
[25] Selroos, J-O. and Follin, S. (2010) SR-Site Groundwater Flow Modeling Methodology, Setup and Results. SKB R-09-22, Svensk K?rn-br?nslehantering AB. 125pp.
[26] Vidstrand, P., Follin, S. and Zugec, N. (2010) Groundwater Flow Modeling of Pe-riods with Periglacial and Glacial Climate Conditions—Forsmark. SKB R-09-21, 190pp, Svensk K?rnbr?nslehantering AB.
[27] Svensson, U. and Follin, S. (2010) Groundwater Flow Modelling of the Excavation and Operational Phases—Forsmark. SKB R-09-19, Svensk K?rnbr?nslehantering AB.
[28] Joyce, S., Applegate, D., Hartley, L., Hoek, J., Simpson, T., Swan, D. and Marsic, N, (2010) Groundwater Flow Modelling of Periods with Temperate Climate Conditions—SR-Site Forsmark. SKB R-09-20, 2010, Svensk K?rnbr?nslehantering AB.