OJCE  Vol.4 No.2 , June 2014
Influence of Microstructural Changes on Some Macro Physical Properties of Cement Mortar during Accelerated Carbonation

The objective of this work was to examine the changes in the microstructure and macro physical properties caused by the carbonation of normalised CEM II mortar. Samples were prepared and subjected to accelerated carbonation at 20&#176C, 65% relative humidity and 20% CO2 concentration. On the microstructure scale, the evolutions of the cumulative pore volume, pore size distribution, and specific surface area during carbonation were calculated from the adsorption desorption isotherms of nitrogen. We also examined the evolution of macro physical properties such as the solid phase volume using helium pycnometry, porosity accessible to water, gas permeability, and thermal conductivity. The conflict between nitrogen porosity and water porosity results indicated that the porous domains explored using these two techniques are different and help to complementarily evaluate the effects of carbonation. This is a multi-scale study where results on microstructural changes can help to explain the evolution of macro physical properties.

Cite this paper: Pham, S. (2014) Influence of Microstructural Changes on Some Macro Physical Properties of Cement Mortar during Accelerated Carbonation. Open Journal of Civil Engineering, 4, 85-91. doi: 10.4236/ojce.2014.42008.

[1]   Mickael, T. (2005) Modelling of Atmospheric Carbonation of Cement Based Materials Considering the Kinetic Effects and Modifications of the Microstructure. Ph.D. Thesis, L’école Nationale des ponts et Chausses, Paris.

[2]   Ngala, V.T. and Page, C.L. (1997) Effects of Carbonation on Pore Structure and Diffusional Propeties of Hydrated Cement Pastes. Cement and Concrete Research, 27, 995-1007.

[3]   Jaafar, W. (2003) Influence de la Carbonatation sur la Porosité et la Perméabilité des Bétons. Diplome d’Etudes Approfondies (Master of Advanced Studies), Laboratoire Central des Ponts et Chaussées, Paris.

[4]   Hiromitu, N. and Masako, H. (1991) Analysis of Adsorption Isotherms of Water Vapour for Nonporous and Porous Adsorbents. Journal of Colloid and Interface Science, 145, 405-412.

[5]   De Belie, N., Kratky, J. and Van Vlierberghe, S. (2010) Influence of Pozzolans and Slag on the Microstructure of Partially Carbonated Cement Paste by Means of Water Vapour and Nitrogen Sorption Experiments and BET Calculations. Cement and Concrete Research, 40, 1723-1733.

[6]   Zhang, Q., Ye, G. and Koenders, E. (2013) Investigation of the Structure of Heated Portland Cement Paste by Using Various Techniques. Construction and Building Materials, 38, 1040-1050.

[7]   Brunauer, S., Emmett, P.H. and Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. Journal of American Chemical Society, 60, 309.

[8]   Barrett, E.P., Joyner, L.G. and Halenda, P.P. (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73, 373-380.

[9]   Kollek, J.J. (1989) The Determination of the Permeability of Concrete to Oxygen by the CEMBUREAU Method—A Recommendation. Materials and Structures, 22, 225-230.

[10]   Association Francaise pour la Construction et pour la Recherche et les Essais sur les Matériaux et les Constructions, (1997) Détermination de la Masse Volumique Apparente et de la Porosité Accessible à l’eau. In: Ollivier, J.P., Ed., Durabilité des béton—Méthodes Recommandées pour la Mesure des Grandeurs Associées à la Durabilité, Laboratoires des Matériaux et Durabilité des Constructions, Toulouse, 121-124.

[11]   Association Francaise de Génie Civil (2004) Conception des Bétons pour une Durée de vie Donnée des Ouvrages. Paris.

[12]   Neville, A.M. (1990) Properties of Concrete. Longman Scientific and Technical, London.

[13]   Houst, F.Y. and Wittmann, F.H. (1989) Retrait de Carbonatation. IABSE Symposium, Lisbon, 255-260.

[14]   Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1989) A Reaction Engineering Approach to the Problem of Concrete Carbonation. AIChE Journal, 35, 1639-1650.

[15]   Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1991) Fundamental Modelling and Experimental Investigation of Concrete Carbonatation. ACI Material Journal, 88, 363-373.