Probability Analysis for the Damage of Gravity Dam

References

[1] Z. Kotulski and K. Sobczyk, “Effects of Parameter Uncertainty on the Response of Vibratory Systems to Random Excitation,” Sound Vibrator, Vol. 119, No. 1, 1986, pp. 159-171.

[2] H. Benaroya and M. Rehak, “Finite Element Methods in Probabil-istic Structural Analysis: A Selective Review,” Applied Me-chanics Reviews, Vol. 41, No. 5, 1987, pp. 201-213.

[3] P. D. Spanos and R. G. Ghanem, “Stochastic finite element expansion for random media,” Journal of engineering mechanics, Vol. 115, No. 5, 1989, pp. 1035-1053.

[4] P. Leger, R. Lariviere, F. Palavicini and R. Tinawi, “Performance of Gated Spillways during the 1996 Sanguinity Flood (Que’bec, Canada) and Evolution of Related Design Criteria,” Proceeding of ICOLD20th Congress, Beijing, Vol. 26, No. 1, 2000, pp. 417-438.

[5] F.-Y. Wang, Z. S. Xu and L. J. Dong, “Stability Model of Tailing Dams Based on Fuzzy Random Reliability,” Chinese Journal of Geotechnical Engineering, Vol. 30, No. 11, 2008, pp. 1600-1605.

[6] R. Viertl, “On Reliability Estimation Based on Fuzzy Lifetime Data,” Journal of Statistical Planning and Inference, Vol. 48, No. 5, 2008, pp. 1-6

[7] E. Castillo, R. Minguez and C. Castillo, “Sensitivity Analysis in Optimization and Reliability Problems,” Reliability Engineering and System Safety, Vol. 93, No. 12, 2008, pp. 1788-1800. doi:10.1016/j.ress.2008.03.010

[8] J. H. Song and W. H. Kang, “System Reliability and Sensitivity under Statistical Dependence by Matrix-Based System Reliability Method,” Structural Safety, Vol. 31, No. 2, 2009, pp. 148-156.
doi:10.1016/j.strusafe.2008.06.012

[9] K. S. Chin, Y. M. Wang, G. K. K. Poon and J.-B. Yang, “Failure Mode and Ef-fects Analysis Using a Group- Based Evidential Reasoning Approach,” Computers & Operations Research, Vol. 36, No. 6, 2009, pp. 1768- 1799. doi:10.1016/j.cor.2008.05.002

[10] Y. W. Liu and F. Moses, “A Sequential Response Surface Method and Its Application in the Reliability Analysis of Aircraft Structural System,” Structural Safety, Vol. 16, No. 1-2, 1994, pp. 39-46.
doi:10.1016/0167-4730(94)00023-J

[11] G. E. P. Box and K. B. Wilson, “The Exploration and Exploitation of Response Surfaces: Some General Considerations and Examples,” Bio-metrics, Vol. 10, No. 1, March 1954, pp. 16-60. doi:10.2307/3001663

[12] A. I. Khuri and J. A. Cornell, “Re-sponse Surfaces: Design and Analyses,” Marcel and Dekker, New York, 1997.

[13] R. H. Myers and D. C. Montgomery, “Response Surface Methodology: Process and Product Opti-mization Using Designed Experiments,” John Wiley and Sons, Hoboken, 1995.

[14] F. S. Wong, “Uncertainties in Dynamic Soil-Structure Interaction,” Journal of Engineering Mechanics, Vol. 110, No. 2, February 1984, pp. 308-24.
doi:10.1061/(ASCE)0733-9399(1984)110:2(308)

[15] F. S. Wong, “Slope Reliability and Response Surface Method,” Journal of Geotechnical Engineering, Vol. 111, No. 1, January 1985, pp. 32-53.
doi:10.1061/(ASCE)0733-9410(1985)111:1(32)

[16] L. Fara-velli, “Response Surface Approach for Reliability Analysis,” Journal of Engineering Mechanics, Vol. 115, No. 12, 1989, pp. 2763-2781.
doi:10.1061/(ASCE)0733-9399(1989)115:12(2763)

[17] L. Faravelli, “Structural reliability via response surface,” In: N. Bellomo, F. Casciati, Eds., Proceedings of IUTAM Symposium on Nonlinear Stochastic Mechanics, Springer Verlag, Berlin, 1992, pp. 213-223.

[18] J. Q. Jiang, C. G. Wu, C. Y. Song, et al., “Adaptive and Iterative Gene Selection Based on Least Squares Support Vector Regression,” Journal of Information & Computational Science, Vol. 3, No. 3, 2006, pp. 443-451.

[19] C. G. Bucher and U. Bourgund, “A Fast and Efficient Response Surface Approach for Structural Reliability Problems,” Structural Safety, Vol. 7, No. 1, 1990, pp. 57- 66. doi:10.1016/0167-4730(90)90012-E

[20] M. R. Rajashekhar and B. R. Ellingwood, “A New Look at the Response Surface Approach for Reliability Analysis,” Structural Safety, Vol. 12, No. 3, 1993, pp. 205-220.
doi:10.1016/0167-4730(93)90003-J

[21] X. L. Guan and R. E. Melchers, “Effect of Response Surface Parameter Variation on Structural Reliability Estimates,” Structural Safety, Vol. 23, No. 4, 2001, pp. 429- 444. doi:10.1016/S0167-4730(02)00013-9

[22] S. Gupta and C. S. Manohar, “Improved Response Surface Method for Time Va-riant Reliability Analysis of Nonlinear Random Structures under no Stationary Excitations,” Nonlinear Dynamics, Vol. 36, No. 2-4, 2004, pp. 267-280. doi:10.1023/B:NODY.0000045519.49715.93

[23] P. Bjerager, “Methods for Structural Reliability Computation,” In: F. Casciati, Ed., Reliability Problems: General Principles and Applications in Mechanics of Solid and Structures, Springer Verlag Wien, New York, 1991, pp. 89-136.

[24] B. Fiessler, H.-J. Neumann and R. Rackwitz, “Quadratic Limit States in Structural Reliability,” Journal of the Engineering Mechanics Division, Vol. 105, No. 4, 1979, pp. 661-676.

[25] K. Breitung, “Asymptotic Approximation for Multi-Nor- mal Integrals,” Journal of Engineering Mechanics, Vol. 10, No. 3, 1984, pp. 357-366.
doi:10.1061/(ASCE)0733-9399(1984)110:3(357)

[26] H. U. Koyluoglu and S. R. K. Nielsen, “New Approximations for SORM Integrals,” Structural Safety, Vol. 13, No. 4, 1994, pp. 235-246. doi:10.1016/0167-4730(94)90031-0

[27] A. D. Ki-ureghian, H. Z. Lin and S. J. Hwang, “Second-Order Reliability Approximations,” Journal of Engineering Mechanics, Vol. 113, No. 8, 1987, pp. 1208- 1225. doi:10.1061/(ASCE)0733-9399(1987)113:8(1208)

[28] J. Zhao and Z. Z. Lu, “Response Surface Method for Reliability Analysis of Implicit Limit State Equation Based on Weighted Regression,” Journal of Mechanical Strength, Vol. 28, No. 4, 2006, pp. 512-516.