IJAA  Vol.4 No.2 , June 2014
Einstein’s General Relativity and Pure Gravity in a Cosserat and De Sitter-Witten Spacetime Setting as the Explanation of Dark Energy and Cosmic Accelerated Expansion

Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method.

Cite this paper: El Naschie, M. (2014) Einstein’s General Relativity and Pure Gravity in a Cosserat and De Sitter-Witten Spacetime Setting as the Explanation of Dark Energy and Cosmic Accelerated Expansion. International Journal of Astronomy and Astrophysics, 4, 332-339. doi: 10.4236/ijaa.2014.42027.

[1]   Duff, M.J. (1999) The World in Eleven Dimensions. Instute of Physical Publications, Bristol.

[2]   Penrose, R. (2004) The Road to Reality. Jonathan Cape, London.

[3]   Cartan, E. (1926) Espaces á connexion affine, projective et conforme. Acta Mathematica, 48, 4-42.

[4]   Czajko, J. (2004) Elie Cartan and Pan-Geometry of Multispatial Hyperspace. Chaos, Solitons & Fractals, 19, 479-502.

[5]   Kaku, M. (1999) Introduction to Superstrings and M-Theory. Springer, New York.

[6]   Becker, K., Becker, M. and Schwarz, J.H. (2007) String Theory and M-Theory. Cambridge University Press, Cambridge.

[7]   El Naschie, M.S. (2009) On the Witten-Duff Five Branes Model Together with Knots Theory and E8E8 Superstrings in a Single Fractal Spacetime Theory. Chaos, Solitons & Fractals, 41, 2016-2021.

[8]   El Naschie, M.S. (2008) Using Witten’s Five Brane Theory and the Holographic Principle to Derive the Value of the Electromagnetic Fine Structure Constant = 1/137. Chaos, Solitons & Fractals, 38, 1051-1053.

[9]   El Naschie, M.S. (2008) Fuzzy Knot Theory Interpretation of Yang-Mills Instantons and Witten’s 5 Brane Model. Chaos, Solitons & Fractals, 38, 1349-1354.

[10]   He, J.-H. and Marek-Crnjac, L. (2013) The Quintessence of El Naschie’s Theory of Fractal Relativity and Dark Energy. Fractal Spacetime & Noncommutative Geometry in Quantum & High Energy Physics, 3, 130-137.

[11]   Helal, M.A., Marek-Crnjac, L. and He, J.-H. (2013) The Three Page Guide to the Most Important Results of M.S. El Naschie’s Research in E-Infinity and Quantum Physics and Cosmology. Open Journal of Microphysics, 3, 141-145.

[12]   Marek-Crnjac, L. (2013) An Invitation to El Naschie’s Theory of Cantorian Spacetime and Dark Energy. International Journal of Astronomy and Astrophysics, 3, 464-471.

[13]   El Naschie, M.S. (2009) The Theory of Cantorian Spacetime and High Energy Particle Physics (an Informal Review). Chaos, Solitons & Fractals, 41, 2635-2646.

[14]   El Naschie, M.S. (2013) Experimentally Based Theoretical Arguments That Unruh’s Temperature, Hawkings’s Vacuum Fluctuation and Rindler’s Wedge Are Physically Real. American Journal of Modern Physics, 2, 357-361.

[15]   El Naschie, M.S. and Helal, A. (2013) Dark Energy Explained via the Hawking-Hartle Quantum Wave and the Topology of Cosmic Crystallography. International Journal of Astronomy and Astrophysics, 3, 318-343.

[16]   El Naschie, M.S. (2014) Dark Energy Explained via Quantum Field Theory in Curved Spacetime. Journal of Modern Physics and Applications, 2, 1-7.

[17]   El Naschie, M.S. (2013) The Missing Dark Energy of the Cosmos from Light Cone Topological Velocity and Scaling the Planck Scale. Open Journal of Microphysics, 3, 64-70.

[18]   El Naschie, M.S. (2013) Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schr?dinger Quantum Wave. Journal of Modern Physics, 4, 591-596.

[19]   El Naschie, M.S. (2013) A Rindler-KAM Spacetime Geometry and Scaling the Planck Scale Solves Quantum Relativity and Explains Dark Energy. International Journal of Astronomy and Astrophysics, 3, 483-493.

[20]   El Naschie, M.S. (2013) From Yang-Mills Photon in Curved Spacetime to Dark Energy Density. Journal of Quantum Information Science, 3, 121-126.

[21]   Marek-Crnjac, L., et al. (2013) Chaotic Fractal Tiling for the Missing Dark Energy and Veneziano Model. Applied Mathematics, 4, 22-29.

[22]   Hehl, F. (1968) Space-Time as Generalized Cosserat Coninuum. In: Kronev, E., Ed., Mechanics of Generalized Continua, Springer Verlag, Berlin, 347-349.

[23]   El Naschie, M.S. (2013) Nash Embedding of Witten’s M-Theory and Hawking-Hartle Quantum Wave of Dark Energy. Journal of Modern Physics, 4, 1417-1428.

[24]   Geng, C.-Q., Lee, C.-C., Saridakis, E.N. and Wu, Y.-P. (2011) “Teleparallel” Dark Energy. Physics Letters B, 704, 384-387.

[25]   Frolov, V. and Zelnikov, A. (2013) Introduction to Black Hole Physics. Oxford University Press, Oxford.

[26]   Hehl, F. and Obukhov, Y. (2007) Elie Cartan’s Torsion in Geometry and in Field Theory: An Essay. Annales de la Foundation Louis de Broglie, 32, 38 p.

[27]   Burnett, J., Chervova, O. and Vassiliev, D. (2009) Dirac Equation as a Special Case of Cosserat Elasticity. In: Cialdea, A., Lanzara, F. and Ricci, P.E., Eds., Analysis, Partial Differential Equations and Applications—The Vladimir Maz’ya Anniversary Volume, Series Operator Theory: Advances and Applications, Vol. 193, Birkhauser Verlag, 15-29.

[28]   El Naschie, M.S. (2007) SU(5) Grand Unification in a Transfinite Form. Chaos, Solitons & Fractals, 32, 370-374.

[29]   El Naschie, M.S. (2007) SO(10) Grand Unification in a Fuzzy Setting. Chaos, Solitons & Fractals, 32, 958-961.

[30]   El Naschie, M.S. (2008) High Energy Physics and the Standard Model from Exceptional Lie Groups. Chaos, Solitons & Fractals, 36, 1-17.

[31]   El Naschie, M.S. (2008) Symmetry Groups Pre-Requisite for E-Infinity in High Energy Physics. Chaos, Solitons & Fractals, 35, 202-211.

[32]   El Naschie, M.S. (2008) Notes on Exceptional Lie Symmetry Groups Hierarchy and Possible Implications for E-Infinity High Energy Physics. Chaos, Solitons & Fractals, 35, 69-70.

[33]   Duff, M. and von Nieuwenhuizen, P. (1980) Quantum Inequivalence of Different Field Representation. Phys. Ltts, 94B, 179-182.

[34]   Duff, M.J. (1999) The World in Eleven Dimensions. Institute of Physics Publications, Bristol.

[35]   El Naschie, M.S. (1990) Stress, Stability and Chaos in Structural Engineering: An Energy Approach. McGraw-Hill International Editions: Civil Engineering Series, London, Tokyo.

[36]   El Naschie, M.S. (1979) Die Ableitung einer Kosistenten Schalentheorie aud dem dreidimensionalen Kontinuum. ōsterreichische Ingenieur-Zeitshift (Austrian Engineering Journal), 22, 339-344.

[37]   El Naschie, M.S. (1974) The Role of Formulation in Elastic Buckling. Ph.D. Thesis, Civil Engineering Department, University College, University of London, April.

[38]   El Naschie, M.S. (2006) Is Einstein’s General Field Equation More Fundamental than Quantum Field and Particle Physics? Chaos, Solitons & Fractals, 30, 525-531.

[39]   Fry, A.B. (2010) CERN, Dark Energy and Dark Matter. Lindau Nobel Online Community, July 1.

[40]   Musser, G. (2013) Does Some Deeper Level of Physics Underlie Quantum Mechanics? An Interview with Nobelist Gerard ’t Hooft. Scientific American, October 7.

[41]   Gao, S. (2013) Explaining Holographic Dark Energy. Galaxies, 1, 180-191.

[42]   ’t Hooft, G. (2001) A Confrontation with Infinity. In: Sidharth, B. and Altaisky, M., Eds., Frontiers of Fundamental Physics 4, Kluwer-Plenum, New York, 1-12.

[43]   El Naschie, M.S. (2001) ’t Hooft’s Dimensional Regularization Implies Transfinite Heterotic String Theory and Dimensional Transmutation. In: Sidharth, B. and Altaisky, M., Eds., Frontiers of Fundamental Physics 4, Kluwer-Plenum, New York, 81-86.

[44]   Challamel, N., Wang, C.M. and Elishakoff, I. (2014) Discrete Systems Behave as Nonlocal Structural Elements: Bending, Buckling and Vibration Analysis. European Journal of Mechanic-A/Solids, 44, 125-135.