[1] Díaz, A., Caro, I., Ory, I. and Blandino, A. (2005) Recovery of Hydrolytic Enzymes Obtained by Solid State Fermentation of Grape Pomace with Aspergillus awamori. Chemical Engineering Transactions, 7, 75.
[2] Datta, S., Christena, L.R. and Rajaram, Y.R.S. (2013) Enzyme Immobilization: An Overview on Techniques and Support Materials. Biotech, 3, 1-9.
[3] Cao, L. (2006) Carrier-Bound Immobilized Enzymes: Principles, Application and Design. Willey-VCH, New Jersey.
[4] Arya, S.K. and Srivastava, S.K. (2006) Kinetics of Immobilized Cyclodextrin Gluconotransferase Produced by Bacillus macerans ATCC 8244. Enzyme and Microbial Technology, 39, 507-510.
http://dx.doi.org/10.1016/j.enzmictec.2005.12.019
[5] Katchalski-Katzir, E. (1993) Immobilized Enzymes: Learning from Past Successes and Failures. Trends in Biotechnology, 11, 471-478.
http://dx.doi.org/10.1016/0167-7799(93)90080-S
[6] Roy, I. and Gupta, M.N. (2006) Bioaffinity Immobilization. In: Jose, M.G., Ed., Immobilization of Enzymes and Cells, 2nd Edition, Humana Press Inc., New York.
http://dx.doi.org/10.1007/978-1-59745-053-9_10
[7] D’Souza, S.F. (1998) Immobilized Enzymes in Bioprocess. Current Science, 77, 69-79
[8] Butt, M.S., Tahir-Nadeem, M., Ahmad, Z. and Sultan, M.T. (2008) Xylanases and Their Applications in Baking Industry. Food Technology and Biotechnology, 46, 22-31.
[9] Simon, O., Politz, O. and Borriss R. (1993) Improving the Characteristics of Bacterial β-Glucanases by Construction of Hybrid Enzymes. Proceedings of the 1st Symposium of Enzymes in Animal Nutrition, Kartause Ittingen, 13-16 October 1993, 22-28.
[10] Liu, J., Yuan, X., Zeng, G., Shi, J. and Chen, S. (2006) Effect of Biosurfactant on Cellulase and Xylanase Production by Tricoderma viride in Solid Substrate Fermentation. Process Biochemistry, 41, 2347-2351.
http://dx.doi.org/10.1016/j.procbio.2006.05.014
[11] Qu, Y., Zhu, M., Liu, K., Bao, X. and Lin, J. (2006) Studies on Cellulosic Ethanol Production for Sustainable Supply of Liquid Fuel in China. Biotechnology Journal, 1, 1235-1240.
http://dx.doi.org/10.1002/biot.200600067
[12] Shen, X. and Xia, L. (2006) Lactic Acid Production from Cellulosic Material by Synergistic Hydrolysis and Fermentation. Applied Biochemistry and Biotechnology, 133, 252-262.
http://dx.doi.org/10.1385/ABAB:133:3:251
[13] Cao, N.J., Xia, Y.K., Gong, C.S. and Tsao, G.T. (1997) Production of 2,3-Butanediol from Pretreated Corn Cob by Klebsiella oxytoca in the Presence of Fungal Cellulase. Applied Biochemistry and Biotechnology, 63-65, 129-139.
http://dx.doi.org/10.1007/BF02920419
[14] Baxter, A., Dillon, M., Taylor, K.D.A. and Roberts, G.A.F. (1992) Improved Method for i.r. Determination of the Degree of N-Acetylation of Chitosan. International Journal of Biological Macromolecules, 14, 166-169.
http://dx.doi.org/10.1016/S0141-8130(05)80007-8
[15] Kurita, K., Sannan, T. and Iwakura, Y. (1977) Studies on Chitin, 4: Evidence for Formation of Block and Random Copolymers of N-Acetyl-D-Glucosamine and D-Glucosamine by Hetero- and Homogeneous Hydrolyses. Die Makromolekulare Chemie, 178, 3197-3202.
http://dx.doi.org/10.1002/macp.1977.021781203
[16] Beppu, M.M., Vieira, R.S., Aimoli, C.G. and Santana, C.C. (2007) Crosslinking of Chitosan Membranes Using Glutaraldehyde: Effect on Ion Permeability and Water Absorption. Journal of Membrane Science, 301, 126-130.
http://dx.doi.org/10.1016/j.memsci.2007.06.015
[17] Gómez, L., Ramirez, H.L., Cabrera, G., Simpson, B.K. and Villalonga, R. (2008) Immobilization of Invertase-Chitosan Conjugate on Hyaluronic-Acid-Modified Chitin. Journal of Food Biochemistry, 32, 264-277.
http://dx.doi.org/10.1111/j.1745-4514.2008.00170.x
[18] Bernath, F.R. and Venkatasubramanian, K. (1986) Methods of Enzyme Immobilization. In: Demain, A.L. and Solomon, N.A., Eds., Manual of Industrial Microbiology and Biotechnology, Vol. 19, 230-247.
[19] Miller, G.L. (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426-428.
http://dx.doi.org/10.1021/ac60147a030
[20] Bradford, M.M. (1976) A Rapid and Sensitive for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72, 248-254.
http://dx.doi.org/10.1016/0003-2697(76)90527-3
[21] Arévalo-Villena, M., úbeda-Iranzo, J.F., Gundllapalli, S.B., Cordero Otero, R.R. and Briones-Pérez, A.I. (2006) Characterization of an Exocellular β-Glucosidase from Debaryomyces pseudopolymorphus. Enzyme and Microbial Technology, 39, 229-234.
http://dx.doi.org/10.1016/j.enzmictec.2005.10.018
[22] Chang, M.Y. and Juang, R.S. (2007) Use of Chitosan-Clay Composite as Immobilization Support for Improved Activity and Stability of β-Glucosidase. Biochemical Engineering Journal, 35, 93-98.
http://dx.doi.org/10.1016/j.bej.2007.01.003
[23] Romo-Sánchez, S., Arévalo-Villena, M., García-Romero, E., Ramirez, H.L. and Briones-Pérez, A. (2013) Immobilization of β-Glucosidase and Its Application for Enhancement of Aroma Precursors in Muscat Wine. Food and Bioprocess Technology, 7, 1381-1392.
http://dx.doi.org/10.1007/s11947-013-1161-1
[24] Busto, M.D., Ortega, N. and Perez-Mateos, M. (1997) Effect of Immobilization on the Stability of Bacterial and Fungal β-D-Glucosidase. Process Biochemistry, 32, 441-449.
http://dx.doi.org/10.1016/S0032-9592(96)00104-5
[25] Pal, A. and Khanum, F. (2011) Covalent Immobilization of Xylanase on Glutaraldehyde Activated Alginate Beads Using Response Surface Methodology: Characterization of Immobilized Enzyme. Process Biochemistry, 46, 1315-1322.
http://dx.doi.org/10.1016/j.procbio.2011.02.024
[26] Zhou, J. (2010) Immobilization of Cellulase on a Reversibly Soluble-Insoluble Support: Properties and Application. Journal of Agricultural and Food Chemistry, 58, 6741-6746.
http://dx.doi.org/10.1021/jf100759c
[27] Chen, S.H., Yen, Y.H., Wang, C.L. and Wang, S.L. (2003) Reversible Immobilization of Lysozyme via Coupling Reversibly Soluble Polymer. Enzyme and Microbial Technology, 33, 643-649.
http://dx.doi.org/10.1016/S0141-0229(03)00186-8
[28] Dincer, A. and Telefoncu, A. (2007) Improving the Stability of Cellulase by Immobilization on Modified Polyvinyl Alcohol Coated Chitosan Beads. Journal of Molecular Catalysis B: Enzymatic, 45, 10-14.
http://dx.doi.org/10.1016/j.molcatb.2006.10.005
[29] Nagar, S., Mittal, A., Kumar, D., Kumar, L. and Gupta, V.K. (2012) Immobilization of Xylanase on Glutaraldehyde Activated Aluminum Oxide Pellets for Increasing Digestibility of Poultry Feed. Process Biochemistry, 47, 1402-1410.
http://dx.doi.org/10.1016/j.procbio.2012.05.013
[30] Akkaya, B., Sahin, F., Demirel, G. and Tümtürk, H. (2009) Functional Polymeric Supports for Immobilization of Cholesterol Oxidase. Biochemical Engineering Journal, 43, 333-337.
http://dx.doi.org/10.1016/j.bej.2008.11.003
[31] Monier, M., El-Sokkaty, A.M.A. and Sarhan, A.A. (2010) Immobilization of Candida rugosa Lipase on Modified Natural Wool Fibers. Reactive and Functional Polymers, 70, 122-128.
http://dx.doi.org/10.1016/j.reactfunctpolym.2009.11.004
[32] Buchholz, K. (1992) Immobilized Enzymes. Kinetics, Efficiency, and Applications. International Journal of Chemical Engineering, 32, 1-13.
[33] Kapoor, M. and Kuhad, R.C. (2007) Immobilization of Xylanase from Bacillus pumilus Strain MK001 and Its Application in Production of Xylo-Oligosaccharides. Applied Biochemistry and Biotechnology, 142, 125-138.
http://dx.doi.org/10.1007/s12010-007-0013-8
[34] Wu, L., Yuan, X. and Sheng, J. (2005) Immobilization of Cellulase in Nanofibrous PVA Membranes by Electrospinning. Journal of Membrane Science, 250, 167-173.
http://dx.doi.org/10.1016/j.memsci.2004.10.024