MSA  Vol.5 No.6 , May 2014
Enhanced Methane Sorption in Densified Forms of a Porous Polymer Network
ABSTRACT

Multi-gram synthesis and densification is presented for a porous polymer network (PPN-4) examined as a possible vehicular methane storage material. Compaction at 17,000 psi doubled the bulk density of the material and unexpectedly increased microporosity within the material. As a result, the densified material exhibits higher excess gravimetric methane uptake and improved total volumetric methane uptake relative to the powder.


Cite this paper
Kizzie, A. , Dailly, A. , Perry, L. , Lail, M. , Lu, W. , Nelson, T. , Cai, M. and Zhou, H. (2014) Enhanced Methane Sorption in Densified Forms of a Porous Polymer Network. Materials Sciences and Applications, 5, 387-394. doi: 10.4236/msa.2014.56044.
References
[1]   Tullo, A. (2013) The Shale Gale Revitalizes US Chemical Production. Chemical & Engineering News, 91, 28-29.

[2]   United States Energy Information Administration Annual Energy Outlook (2013)
http://www.eia.gov/forecasts/aeo/pdf/0383(2013).pdf

[3]   Menon, V.C. and Komarneni, S. (1998) Porous Adsorbents for Vehicular Natural Gas Storage: A Review. Journal of Porous Materials, 5, 43-58.
http://dx.doi.org/10.1023/A:1009673830619

[4]   Makal, T.A., Li, J.-R., Lu, W. and Zhou, H.-C. (2012) Methane Storage in Advanced Porous Materials. Chemical Society Reviews, 41, 7761-7779.
http://dx.doi.org/10.1039/c2cs35251f

[5]   United States Department of Energy Alternative Fuels Data Center (2013)
http://www.afdc.energy.gov/fuels/fuel_properties.php

[6]   He, Y., Zhou, W., Yildirim, T. and Chen, B. (2013) A Series of Metal-Organic Frameworks with High Methane Uptake and an Empirical Equation for Predicting Methane Storage Capacity. Energy & Environmental Science, 6, 2735-2744.
http://dx.doi.org/10.1039/c3ee41166d

[7]   Konstas, K., Osl, T., Yang, Y., Batten, M., Burke, N., Hill, A.J. and Hill, M.R. (2012) Methane Storage in Metal Organic Frameworks. Journal of Materials Chemistry, 22, 16698-16708.
http://dx.doi.org/10.1039/c2jm32719h

[8]   Wilmer, C.E., Farha, O.K., Yildirim, T., Eryazici, I., Krungleviciute, V., Sarjeant, A.A., Snurr, R.Q. and Hupp, J.T. (2013) Gram-Scale, High-Yield Synthesis of a Robust Metal-Organic Framework for Storing Methane and Other Gases. Energy & Environmental Science, 6, 1158-1163.

[9]   Peng, Y., Srinivas, G., Wilmer, C.E., Eryazici, I., Snurr, R.Q., Hupp, J.T., Yildirim, T. and Farha, O.K. (2013) Simultaneously High Gravimetric and Volumetric Methane Uptake Characteristics of the Metal-Organic Framework NU-111. Chemical Communications, 49, 2992-2994.
http://dx.doi.org/10.1039/c3cc40819a

[10]   Peng, Y., Krungleviciute, V., Eryazici, I., Hupp, J.T., Farha, O.K. and Yildirim, T. (2013) Methane Storage in MetalOrganic Frameworks: Current Records, Surprise Findings, and Challenges. Journal of the American Chemical Society, 135, 11887-11894.
http://dx.doi.org/10.1021/ja4045289

[11]   Lu, Z., Du, L., Tang, K. and Bai, J. (2013) High H2 and CH4 Adsorption Capacity of a Highly Porous (2,3,4)-Connected Metal-Organic Framework. Crystal Growth & Design, 13, 2252-2255.
http://dx.doi.org/10.1021/cg400449c

[12]   Getman, R.B., Bae, Y.-S., Wilmer, C.E. and Snurr, R.Q. (2011) Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal-Organic Frameworks. Chemical Reviews, 112, 703-723.
http://dx.doi.org/10.1021/cr200217c

[13]   Feldblyum, J.I., Dutta, D., Wong-Foy, A.G., Dailly, A., Imirzian, J., Gidley, D.W. and Matzger, A.J. (2013) Interpenetration, Porosity, and High-Pressure Gas Adsorption in Zn4O(2,6-naphthalene dicarboxylate)3. Langmuir, 29, 81468153.
http://dx.doi.org/10.1021/la401323t

[14]   Guo, Z., Wu, H., Srinivas, G., Zhou, Y., Xiang, S., Chen, Z., Yang, Y., Zhou, W., O’Keeffe, M. and Chen, B. (2011) A Metal-Organic Framework with Optimized Open Metal Sites and Pore Spaces for High Methane Storage at Room Temperature. Angewandte Chemie International Edition, 50, 3178-3181.
http://dx.doi.org/10.1002/anie.201007583

[15]   Liu, D., Wu, H., Wang, S., Xie, Z., Li, J. and Lin, W. (2012) A High Connectivity Metal-Organic Framework with Exceptional Hydrogen and Methane Uptake Capacities. Chemical Science, 3, 3032-3037.
http://dx.doi.org/10.1039/c2sc20601c

[16]   Munusamy, K., Sethia, G., Patil, D.V., Rallapalli, P.B.S., Somani, R.S. and Bajaj, H.C. (2012) Sorption of Carbon Dioxide, Methane, Nitrogen and Carbon Monoxide on MIL-101(Cr): Volumetric Measurements and Dynamic Adsorption Studies. Chemical Engineering Journal, 195-196, 359-368.
http://dx.doi.org/10.1016/j.cej.2012.04.071

[17]   Stoeck, U., Krause, S., Bon, V., Senkovska, I. and Kaskel, S. (2012) A Highly Porous Metal-Organic Framework, Constructed from a Cuboctahedral Super-Molecular Building Block, with Exceptionally High Methane Uptake. Chemical Communications, 48, 10841-10843.
http://dx.doi.org/10.1039/c2cc34840c

[18]   Mu, B. and Walton, K. (2011) Adsorption Equilibrium of Methane and Carbon Dioxide on Porous Metal-Organic Framework Zn-BTB. Adsorption, 17, 777-782.
http://dx.doi.org/10.1007/s10450-011-9328-4

[19]   Ma, S. and Zhou, H.C. (2010) Gas Storage in Porous Metal-Organic Frameworks for Clean Energy Applications. Chemical Communications, 46, 44-53.
http://dx.doi.org/10.1039/b916295j

[20]   Wu, H., Simmons, J.M., Liu, Y., Brown, C.M., Wang, X.S., Ma, S., Peterson, V.K., Southon, P.D., Kepert, C.J., Zhou, H.C., Yildirim, T. and Zhou, W. (2010) Metal-Organic Frameworks with Exceptionally High Methane Uptake: Where and How Is Methane Stored? Chemistry—A European Journal, 16, 5205-5214.
http://dx.doi.org/10.1002/chem.200902719

[21]   Yuan, D., Zhao, D., Sun, D. and Zhou, H.C. (2010) An Isoreticular Series of Metal-Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity. Angewandte Chemie International Edition, 49, 5357-5361.
http://dx.doi.org/10.1002/anie.201001009

[22]   Comotti, A., Bracco, S., Distefano, G. and Sozzani, P. (2009) Methane, Carbon Dioxide and Hydrogen Storage in Nanoporous Dipeptide-Based Materials. Chemical Communications, 2009, 284-286.
http://dx.doi.org/10.1039/b820200a

[23]   Ma, S., Sun, D., Simmons, J.M., Collier, C.D., Yuan, D. and Zhou, H.C. (2007) Metal-Organic Framework from an Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake. Journal of the American Chemical Society, 130, 1012-1016.
http://dx.doi.org/10.1021/ja0771639

[24]   Düren, T. and Snurr, R.Q. (2004) Assessment of Isoreticular Metal-Organic Frameworks for Adsorption Separations: A Molecular Simulation Study of Methane/n-Butane Mixtures. The Journal of Physical Chemistry B, 108, 15703-15708.
http://dx.doi.org/10.1021/jp0477856

[25]   Düren, T., Sarkisov, L., Yaghi, O.M. and Snurr, R.Q. (2004) Design of New Materials for Methane Storage. Langmuir, 20, 2683-2689.
http://dx.doi.org/10.1021/la0355500

[26]   Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M. and Yaghi, O.M. (2002) Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295, 469-472.
http://dx.doi.org/10.1126/science.1067208

[27]   Seki, K. (2001) Design of an Adsorbent with an Ideal Pore Structure for Methane Adsorption Using Metal Complexes. Chemical Communications, 2001, 1496-1497.
http://dx.doi.org/10.1039/b104204c

[28]   Seki, K. and Mori, W. (2002) Syntheses and Characterization of Microporous Coordination Polymers with Open Frameworks. The Journal of Physical Chemistry B, 106, 1380-1385.
http://dx.doi.org/10.1021/jp0130416

[29]   Kondo, M., Yoshitomi, T., Matsuzaka, H., Kitagawa, S. and Seki, K. (1997) Three-Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4, 4’-bpy)3(NO3)4].xH2O}n (M = Co, Ni, Zn). Angewandte Chemie International Edition, 36, 1725-1727.
http://dx.doi.org/10.1002/anie.199717251

[30]   Feng, X., Ding, X. and Jiang, D. (2012) Covalent Organic Frameworks. Chemical Society Reviews, 41, 6010-6022.
http://dx.doi.org/10.1039/c2cs35157a

[31]   Rabbani, M.G., Sekizkardes, A.K., Kahveci, Z., Reich, T.E., Ding, R. and El-Kaderi, H.M. (2013) A 2D Mesoporous Imine-Linked Covalent Organic Framework for High Pressure Gas Storage Applications. Chemistry—A European Journal, 19, 3324-3328.
http://dx.doi.org/10.1002/chem.201203753

[32]   Furukawa, H. and Yaghi, O.M. (2009) Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. Journal of the American Chemical Society, 131, 8875-8883.
http://dx.doi.org/10.1021/ja9015765

[33]   El-Kaderi, H.M., Hunt, J.R., Mendoza-Cortés, J.L., Coté, A.P., Taylor, R.E., O’Keeffe, M. and Yaghi, O.M. (2007) Designed Synthesis of 3D Covalent Organic Frameworks. Science, 316, 268-272.
http://dx.doi.org/10.1126/science.1139915

[34]   Coté, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J. and Yaghi, O.M. (2005) Porous, Crystalline, Covalent Organic Frameworks. Science, 310, 1166-1170.
http://dx.doi.org/10.1126/science.1120411

[35]   Xiang, Z. and Cao, D. (2013) Porous Covalent-Organic Materials: Synthesis, Clean Energy Application and Design. Journal of Materials Chemistry A, 1, 2691-2718.
http://dx.doi.org/10.1039/c2ta00063f

[36]   Yuan, D., Lu, W., Zhao, D. and Zhou, H.C. (2011) Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities. Advanced Materials, 23, 3723-3725.
http://dx.doi.org/10.1002/adma.201101759

[37]   Ben, T., Pei, C., Zhang, D., Xu, J., Deng, F., Jing, X. and Qiu, S. (2011) Gas Storage in Porous Aromatic Frameworks (PAFs). Energy & Environmental Science, 4, 3991-3999.
http://dx.doi.org/10.1039/c1ee01222c

[38]   Lu, W., Yuan, D., Zhao, D., Schilling, C.I., Plietzsch, O., Muller, T., Brase, S., Guenther, J., Blümel, J., Krishna, R., Li, Z. and Zhou, H.C. (2010) Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation. Chemistry of Materials, 22, 5964-5972.
http://dx.doi.org/10.1021/cm1021068

[39]   Farha, O.K., Spokoyny, A.M., Hauser, B.G., Bae, Y.S., Brown, S.E., Snurr, R.Q., Mirkin, C.A. and Hupp, J.T. (2009) Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer. Chemistry of Materials, 21, 3033-3035.
http://dx.doi.org/10.1021/cm901280w

[40]   Zhu, Y., Long, H. and Zhang, W. (2013) Imine-Linked Porous Polymer Frameworks with High Small Gas (H2, CO2, CH4, C2H2) Uptake and CO2/N2 Selectivity. Chemistry of Materials, 25, 1630-1635.
http://dx.doi.org/10.1021/cm400019f

[41]   Wood, C.D., Tan, B., Trewin, A., Su, F., Rosseinsky, M.J., Bradshaw, D., Sun, Y., Zhou, L. and Cooper, A.I. (2008) Microporous Organic Polymers for Methane Storage. Advanced Materials, 20, 1916-1921.
http://dx.doi.org/10.1002/adma.200702397

[42]   Ben, T., Ren, H., Ma, S., Cao, D., Lan, J., Jing, X., Wang, W., Xu, J., Deng, F., Simmons, J.M., Qiu, S. and Zhu, G. (2009) Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area. Angewandte Chemie International Edition, 48, 9457-9460.
http://dx.doi.org/10.1002/anie.200904637

[43]   Cooper, A.I. (2009) Conjugated Microporous Polymers. Advanced Materials, 21, 1291-1295.
http://dx.doi.org/10.1002/adma.200801971

[44]   Fournier, J.H., Wang, X. and Wuest, J.D. (2003) Derivatives of Tetraphenylmethane and Tetraphenylsilane: Synthesis of New Tetrahedral Building Blocks for Molecular Construction. Canadian Journal of Chemistry, 81, 376-380.
http://dx.doi.org/10.1139/v03-056

[45]   Yamamoto, T., Morita, A., Miyazaki, Y., Maruyama, T., Wakayama, H., Zhou, Z.H., Nakamura, Y., Kanbara, T., Sasaki, S. and Kubota, K. (1992) Preparation of π-Conjugated Poly(Thiophene-2,5-Diyl), Poly(P-Phenylene), and Related Polymers Using Zerovalent Nickel Complexes. Linear Structure and Properties of the π-Conjugated Polymers. Macromolecules, 25, 1214-1223.
http://dx.doi.org/10.1021/ma00030a003

[46]   Yamamoto, T., Ito, T. and Kubota, K. (1988) A Soluble Poly(Arylene) with Large Degree of Depolarization. Poly (2,5-Pyridinediyl) Prepared by Dehalogenation Polycondensation of 2,5-Dibromopyridine with Ni(0)-Complexes. Chemistry Letters, 17, 153-154.
http://dx.doi.org/10.1246/cl.1988.153

[47]   Walton, K.S. and Snurr, R.Q. (2007) Applicability of the BET Method for Determining Surface Areas of Microporous Metal-Organic Frameworks. Journal of the American Chemical Society, 129, 8552-8556.
http://dx.doi.org/10.1021/ja071174k

[48]   Alcaniz-Monge, J., De La Casa-Lillo, M.A., Cazorla-Amorós, D. and Linares-Solano, A. (1997) Methane Storage in Activated Carbon Fibres. Carbon, 35, 291-297.
http://dx.doi.org/10.1016/S0008-6223(96)00156-X

[49]   Sun, J., Rood, M.J., Rostam-Abadi, M. and Lizzio, A.A. (1996) Natural Gas Storage with Activated Carbon from a Bituminous Coal. Gas Separation & Purification, 10, 91-96.
http://dx.doi.org/10.1016/0950-4214(96)00009-6

[50]   Cracknell, R.F., Gordon, P. and Gubbins, K.E. (1993) Influence of Pore Geometry on the Design of Microporous Materials for Methane Storage. The Journal Physical Chemistry, 97, 494-499.
http://dx.doi.org/10.1021/j100104a036

[51]   Martin, R.L. and Haranczyk, M. (2013) Optimization-Based Design of Metal-Organic Framework Materials. Journal of Chemical Theory and Computation, 9, 2816-2825.
http://dx.doi.org/10.1021/ct400255c

 
 
Top