[1] (2013) A Roadmap for U.S. Robotics: From Internet to Robotics. tech. rep. www.robotics-vo.us
[2] Indiveri, G. and Horiuchi, T.K. (2011) Frontiers in Neuromorphic Engineering. Frontiers in Neuroscience, 5, 118.
[3] Mahowald, M. and Mead, C. (1989) Analog VLSI and Neural Systems. Silicon Retina, Addison-Wesley, Reading, 257-278.
[4] Boahen, K. and Andreou, A. (1992) A Contrast Sensitive Silicon Retina with Reciprocal Synapses. In: Moody, J., Hanson, S. and Lippman, R., Eds., Advances in Neural Information Processing Systems (Vol. 4), Morgan Kaufmann, San Mateo, 764-772.
[5] Kramer, J. (2002) An Integrated Optical Transient Sensor. IEEE Transactions on Circuits and Systems II, 49, 612-628. http://dx.doi.org/10.1109/TCSII.2002.807270
[6] Lichtsteiner, P., Posch, C. and Delbruck, T. (2008) An 128 × 128 120 dB 15 μs Latency Temporal Contrast Vision Sensor. IEEE Journal of Solid State Circuits, 43, 566-576.
http://dx.doi.org/10.1109/JSSC.2007.914337
[7] Posch, C., Matolin, D. and Wohlgenannt, R. (2011) A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor with Lossless Pixel-Level Video Compression and Time-Domain CDS. IEEE Journal of Solid-State Circuits, 46, 259-275. http://dx.doi.org/10.1109/JSSC.2010.2085952
[8] Koch, C. and Mathur, B. (1996) Neuromorphic Vision Chips. IEEE Spectrum, 33, 38-46. http://dx.doi.org/10.1109/6.490055
[9] Liu, S.-C. and Delbruck, T. (2010) Neuromorphic Sensory Systems. Current Opinion in Neurobiology, 20, 288-295. http://dx.doi.org/10.1016/j.conb.2010.03.007
[10] Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G. and Douglas, R.J. (2013) Synthesizing Cognition in Neuromorphic Electronic Systems. Proceedings of the National Academy of Sciences, 110, E3468-E3476. http://dx.doi.org/10.1073/pnas.1212083110
[11] Zentall, T.R., Wasserman, E.A., Lazareva, O.F., Thompson, R.R.K. and Ratterman, M.J. (2008) Concept Learning in Animals. Comparative Cognition & Behavior Reviews, 3, 13-45.
[12] Zentall, T.R., Wasserman, E.A. and Urcuioli, P.J. (2014) Associative Concept Learning in Animals. Journal of the Experimental Analysis of Behavior, 101, 130-151. http://dx.doi.org/10.1002/jeab.55
[13] Gentner, D. and Smith, L.A. (2013) Analogical Learning and Reasoning. In: The Oxford Handbook of Cognitive Psychology, Oxford University Press, Oxford, 668-681.
[14] Emruli, B. and Sandin, F. (2014) Analogical Mapping with Sparse Distributed Memory: A Simple Model That Learns to Generalize from Examples. Cognitive Computation, 6, 74-88.
[15] Emruli, B., Gayler, R. and Sandin, F. (2013) Analogical Mapping and Inference with Binary Spatter Codes and Sparse Distributed Memory. The 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, 4-9 August 2013, 1-8
[16] Avarguès-Weber, A., Dyer, A.G. and Giurfa, M. (2011) Conceptualization of Above and Below Relationships by an Insect. Proceedings of the Royal Society B: Biological Sciences, 278, 898-905.
[17] Avarguès-Weber, A., Dyer, A.G., Combe, M. and Giurfa, M. (2012) Simultaneous Mastering of Two Abstract Concepts by the Miniature Brain of Bees. Proceedings of the National Academy of Sciences, 109, 7481-7486. http://dx.doi.org/10.1073/pnas.1202576109
[18] Avarguès-Weber, A. and Giurfa, M. (2013) Conceptual Learning by Miniature Brains. Proceedings of the Royal Society B: Biological Sciences, 280. http://dx.doi.org/10.1098/rspb.2013.1907
[19] Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., Wu, C.C., Chen, G.Y., Ching, Y.T., Lee, P.C., Lin, C.Y., Lin, H.H., Wu, C.C., Hsu, H.W., Huang, Y.A., Chen, J.Y., Chiang, H.J., Lu, C.F., Ni, R.F., Yeh, C.Y. and Hwang, J.K. (2011) Three-Dimensional Reconstruction of Brain-Wide Wiring Networks in Drosophila at Single-Cell Resolution. Current Biology, 21, 1-11. http://dx.doi.org/10.1016/j.cub.2010.11.056
[20] Witthoft, W. (1967) Absolute anzahl und verteilung der zellenim him der honigbiene. Zeitschrift für Morphologie der Tiere, 61, 160-184.
[21] Herculano-Houzel, S. (2009) The Human Brain in Numbers: A Linearly Scaled-Up Primate Brain. Frontiers in Human Neuroscience, 3, 31.
[22] Giurfa, M. (2013) Cognition with Few Neurons: Higher-Order Learning in Insects. Trends in Neurosciences, 36, 285- 294. http://dx.doi.org/10.1016/j.tins.2012.12.011
[23] Ibbotson, M. (2001) Evidence for Velocity-Tuned Motion-Sensitive Descending Neurons in the Honeybee. Proceedings of the Royal Society B: Biological Sciences, 268, 2195-2201.
http://dx.doi.org/10.1098/rspb.2001.1770
[24] Srinivasan, M.V. (2010) Honey Bees as a Model for Vision, Perception, and Cognition. Annual Review of Entomology, 55, 267-284. http://dx.doi.org/10.1146/annurev.ento.010908.164537
[25] Reinhard, J., Srinivasan, M.V. and Zhang, S.W. (2004) Olfaction: Scent-Triggered Navigation in Honeybees. Nature, 427, 411. http://dx.doi.org/10.1038/427411a
[26] Srinivasan, M.V., Zhang, S., Altwein, M. and Tautz, J. (2000) Honeybee Navigation: Nature and Calibration of the “Odometer”. Science, 287, 851-853.
http://dx.doi.org/10.1126/science.287.5454.851
[27] Esch, H.E., Zhang, S.W., Srinivasan, M.V. and Tautz, J. (2001) Honeybee Dances Communicate Distances Measured by Optic Flow. Nature, 411, 581-583. http://dx.doi.org/10.1038/35079072
[28] von Frisch, K. (1914) Der Farbensinn und Formensinn der Biene. Fischer, Jena.
[29] Dyer, A.G., Spaethe, J. and Prack, S. (2008) Comparative Psychophysics of Bumblebee and Honeybee Colour Discrimination and Object Detection. Journal of Comparative Physiology A, 194, 617-627. http://dx.doi.org/10.1007/s00359-008-0335-1
[30] Brandt, R., Rohlfing, T., Rybak, J., Krofczik, S., Maye, A., Westerhoff, M., Hege, H.C. and Menzel, R. (2005) Three-Dimensional Average-Shape Atlas of the Honeybee Brain and Its Applications. The Journal of Comparative Neurology, 492, 1-19. http://dx.doi.org/10.1002/cne.20644
[31] Dyer, A.G., Paulk, A.C. and Reser, D.H. (2011) Colour Processing in Complex Environments: Insights from the Visual System of Bees. Proceedings of the Royal Society B: Biological Sciences, 278, 952-959.
[32] Skorupski, P. and Chittka, L. (2010) Differences in Photoreceptor Processing Speed for Chromatic and Achromatic Vision in the Bumblebee, Bombust errestris. The Journal of Neuroscience, 30, 3896-3903. http://dx.doi.org/10.1523/JNEUROSCI.5700-09.2010
[33] Giurfa, M., Zhang, S., Jenett, A., Menzel, R. and Srinivasan, M.V. (2001) The Concepts of “Sameness” and “Difference” in an Insect. Nature, 410, 930-933. http://dx.doi.org/10.1038/35073582
[34] Dyer, A.G. and Griffiths, D.W. (2012) Seeing Near and Seeing Far; Behavioural Evidence for Dual Mechanisms of Pattern Vision in the Honeybee (Apis mellifera). The Journal of Experimental Biology, 215, 397-404. http://dx.doi.org/10.1242/jeb.060954
[35] Avarguès-Weber, A., Portelli, G., Benard, J., Dyer, A. and Giurfa, M. (2010) Configural Processing Enables Discrimination and Categorization of Face-Like Stimuli in Honeybees. The Journal of Experimental Biology, 213, 593-601. http://dx.doi.org/10.1242/jeb.039263
[36] Dyer, A.G. and Vuong, Q.C. (2008) Insect Brains Use Image Interpolation Mechanisms to Recognize Rotated Objects. PLoS ONE, 3, e4086. http://dx.doi.org/10.1371/journal.pone.0004086
[37] Chittka, L. and Niven, J. (2009) Are Bigger Brains Better? Current Biology, 19, R995-R1008. http://dx.doi.org/10.1016/j.cub.2009.08.023
[38] Paulk, A.C., Dacks, A.M., Phillips-Portillo, J., Fellous, J.M. and Gronenberg, W. (2009) Visual Processing in the Central Bee Brain. The Journal of Neuroscience, 29, 9987-9999.
http://dx.doi.org/10.1523/JNEUROSCI.1325-09.2009
[39] Niggebrügge, C., Leboulle, G., Menzel, R., Komischke, B. and de Ibarra, N.H. (2009) Fast Learning but Coarse Discrimination of Colors in Restrained Honeybees. Journal of Experimental Biology, 212, 1344-1350. http://dx.doi.org/10.1242/jeb.021881
[40] Luu, T., Cheung, A., Ball, D. and Srinivasan, M.V. (2011) Honeybee Flight: A Novel “Streamlining” Response. The Journal of Experimental Biology, 214, 2215-2225.
http://dx.doi.org/10.1242/jeb.050310
[41] Paulk, A.C., Stacey, J.A., Pearson, T.W.J., Taylor, G.J., Moore, R.J.D., Srinivasan, M.V. and van Swinderen, B. (2014) Selective Attention in the Honeybee Optic Lobes Precedes Behavioral Choices. Proceedings of the National Academy of Sciences of the United States of America, 111, 5006-5011.
http://dx.doi.org/10.1073/pnas.1323297111
[42] Delbruck, T. (2008) Frame-Free Dynamic Digital Vision. Proceedings of International Symposium on Secure-Life Electronics Advanced Electronics for Quality Life and Society, Tokyo, 6-7 March 2008, 21-26.
[43] Posch, C., Matolin, D., Wohlgenannt, R., Hofst?tter, M., Sch?n, P., Litzenberger, M., Bauer, D. and Garn, H. (2010) Biomimetic Frame-Free HDR Camera with Event-Driven PWM Image/Video Sensor and Full-Custom Address-Event Processor. 2010 IEEE Biomedical Circuits and Systems Conference (BioCAS), Paphos, 3-5 November 2010, 254-257.
[44] Benosman, R., Ieng, S.H., Clercq, C., Bartolozzi, C. and Srinivasan, M. (2012) Asynchronous Frameless Event-Based Optical Flow. Neural Networks, 27, 32-37.
http://dx.doi.org/10.1016/j.neunet.2011.11.001
[45] Conte, D., Foggia, P., Sansone, C. and Vento, M. (2004) Thirty Years of Graph Matching in Pattern Recognition. International Journal of Pattern Recognition and Artificial Intelligence, 18, 265-298. http://dx.doi.org/10.1142/S0218001404003228
[46] Jia, Y., Abbott, J.T., Austerweil, J., Griffiths, T. and Darrell, T. (2013) Visual Concept Learning: Combining Machine Vision and Bayesian Generalization on Concept Hierarchies. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z. and Weinberger, K., Eds., Advances in Neural Information Processing Systems, 26, 1842-1850.
[47] Harnad, S. (1990) The Symbol Grounding Problem. Physica D: Nonlinear Phenomena, 42, 335-346. http://dx.doi.org/10.1016/0167-2789(90)90087-6
[48] Barsalou, L.W. (2008) Grounded Cognition. Annual Review of Psychology, 59, 617-645. http://dx.doi.org/10.1146/annurev.psych.59.103006.093639
[49] Lake, B.M., Salakhutdinov, R. and Tenenbaum, J.B. (2012) Concept Learning as Motor Program Induction: A Large-Scale Empirical Study. Proceedings of the 34th Annual Conference of the Cognitive Science Society, Sapporo, 1-4 August 2012, 659-664.
[50] Olshausen, B. and Field, D. (1996) Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images. Nature, 381, 607-609. http://dx.doi.org/10.1038/381607a0
[51] Feldman, J. (2003) The Simplicity Principle in Human Concept Learning. Current Directions in Psychological Science, 12, 227-232. http://dx.doi.org/10.1046/j.0963-7214.2003.01267.x
[52] Gallant, S.I. and Okaywe, T.W. (2013) Representing Objects, Relations, and Sequences. Neural Computation, 25, 2038-2078. http://dx.doi.org/10.1162/NECO_a_00467
[53] Kanerva, P. (2009) Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors. Cognitive Computation, 1, 139-159.
[54] Gayler, R.W. (2003) Vector Symbolic Architectures Answer Jackendoff’s Challenges for Cognitive Neuroscience. Proceedings of the ICCS/ASCS International Conference on Cognitive Science, Sydney, 13-17 July 2003, 133-138.
[55] Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y. and Rasmussen, D. (2012) A Large-Scale Model of the Functioning Brain. Science, 338, 1202-1205.
http://dx.doi.org/10.1126/science.1225266
[56] Kanerva, P. (1988) Sparse Distributed Memory. The MIT Press, Cambridge.
[57] Abbott, J.T., Hamrick, J.B. and Grifths, T.L. (2013) Approximating Bayesian Inference with a Sparse Distributed Memory System. Proceedings of the 35th Annual Conference of the Cognitive Science Society, Berlin, 31 July -3 August 2013, 6.
[58] Neumann, J. (2002) Learning the Systematic Transformation of Holographic Reduced Representations. Cognitive Systems Research, 3, 227-235.
http://dx.doi.org/10.1016/S1389-0417(01)00059-6
[59] Curto, C. and Itskov, V. (2008) Cell Groups Reveal Structure of Stimulus Space. PLoS Computational Biology, 4, Article ID: e1000205.
[60] Kleyko, D., Lyamin, N., Osipov, E. and Riliskis, L. (2012) Dependable MAC Layer Architecture Based on Holographic Data Representation Using Hyper-Dimensional Binary Spatter Codes. Multiple Access Communications: 5th International Workshop, MACOM 2012, Springer, Berlin, 134-145.
[61] Jakimovski, P., Schmidtke, H.R., Sigg, S., Chaves, L.W.F. and Beigl, M. (2012) Collective Communication for Dense Sensing Environments. Journal of Ambient Intelligence and Smart Environments (JAISE), 4, 123-134.
[62] Hentrich, D., Oruklu, E. and Saniie, J. (2011) Polymorphic Computing: Definition, Trends, and a New Agent-Based Architecture. Circuits and Systems, 2, 358-364.
[63] Ramo, S. (1959) All about Polymorphics. https://archive.org/details/AllAboutPolymorphics1959
[64] Granacki, J.J. and Vahey, M.D. (2002) Monarch: A High Performance Embedded Processor Architecture with Two Native Computing Modes. Proceedings of High Performance Embedded Computing Workshop 2002, Lexington, 24-26 September 2002.
[65] Nasution, B.B. and Khan, A.I. (2008) A Hierarchical Graph Neuron Scheme for Real-Time Pattern Recognition. IEEE Transactions on Neural Networks, 19, 212-229.
http://dx.doi.org/10.1109/TNN.2007.905857
[66] Osipov, E., Khan, A. and Amin, A.M. (2014) Holographic Graph Neuron. Proceedings of the 2nd International Conference on Computer and Information Sciences (ICCOINS 2014), Kuala Lumpur, 3-5 June 2014.