OJAppS  Vol.4 No.6 , May 2014
The Effect of Relative Humidity on Maritime Tropical Aerosols
ABSTRACT
The present work focused on the effect of relative humidity (RH) on some microphysical and optical properties of maritime tropical aerosols from the software package OPAC (Optical Properties of Aerosols and Clouds) data at the spectral range of 0.25 μm to 2.5 μm and eight relative humidities (0%, 50%, 70%, 80%, 90%, 95%, 98%, and 99%). The microphysical properties extracted were radii, volume mix ratio, number mix ratio and mass mix ratio as a function of RH while the optical properties were optical depth, extinction, scattering and absorption coefficients single scattering albedo, refractive indices and asymmetric parameters. The hygroscopic growth and enhancement parameters were then parameterized by using some models to determine the hygroscopicity, bulk hygroscopicity, humidification factors and some other parameters that depend on RH and/or wavelengths. The results showed that the data fitted our models very well and can be used to extrapolate the hygroscopic growth at any RH and enhancement parameters at any RH and wavelengths. The importance of determining gfmix(RH) as a function of RH and volume fractions, mass fractions and number fractions, and enhancement parameters as a function of RH. The effective radii increases with the increase in RH, while Angstrom coefficients decrease with the increase in RH and this signifies the dominance of coarse mode particles. The angstrom coefficients show that the mixture has bimodal type of distribution and the mode size increases with the increase in RH.

Cite this paper
Tijjani, B. , Sha'aibu, F. and Aliyu, A. (2014) The Effect of Relative Humidity on Maritime Tropical Aerosols. Open Journal of Applied Sciences, 4, 299-322. doi: 10.4236/ojapps.2014.46029.
References
[1]   Cheng, Y.F., Wiedensohler, A., Eichler, H., Heintzenberg, J., Tesche, M., Ansmann, A., Wendisch, M., Su, H., Althausen, D., Herrmann, H., Gnauk, T., Brüggemann, E., Hu, M. and Zhang, Y.H. (2008) Relative Humidity Dependence of Aerosol Optical Properties and Direct Radiative Forcing in the Surface Boundary Layer at Xinken in Pearl River Delta of China: An observation Based Numerical Study. Atmospheric Environment, 42, 6373-6397.
http://dx.doi.org/10.1016/j.atmosenv.2008.04.009

[2]   Topping, D.O., McFiggans, G.B. and Coe, H. (2005) A Curved Multi-Component Aerosol Hygroscopicity Model Framework: Part 1—Inorganic Compounds. Atmospheric Chemistry and Physics, 5, 1205-1222.
http://dx.doi.org/10.5194/acp-5-1205-2005

[3]   Topping, D.O., McFiggans, G.B. and Coe, H. (2005) A Curved Multicomponent Aerosol Hygroscopicity Model Framework: Part 2—Including Organic Compounds. Atmospheric Chemistry and Physics, 5, 1223-1242.
http://dx.doi.org/10.5194/acp-5-1223-2005

[4]   Orr Jr., C., Hurd, F.K. and Corbett, W.J. (1958) Aerosol Size and Relative Humidity. Journal of Colloid Science, 13, 472-482.
http://dx.doi.org/10.1016/0095-8522(58)90055-2

[5]   Tang, I.N. (1976) Phase Transformation and Growth of Aerosol Particles Composed of Mixed Salts. Journal of Aerosol Science, 7, 361-371.
http://dx.doi.org/10.1016/0021-8502(76)90022-7

[6]   Twomey, S. (1977) Atmospheric Aerosols. Elsevier, New York.

[7]   Ogren, J.A. and Charlson R.J. (1992) Implications for Models and Measurements of Chemical Inhomogeneities among Cloud Droplets. Tellus B, 44, 489-504.

[8]   Swietlicki, E., Hansson, H.C., Hameri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P.H., Petaja, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A. and Kulmala, M. (2008) Hygroscopic Properties of Submicrometer Atmospheric Aerosol Particles Measured with H-TDMA Instruments in Various Environments: A Review. Tellus B, 60, 432-469.
http://dx.doi.org/10.3402/tellusb.v60i3.16936

[9]   Rissler, J., Svenningsson, B., Fors, E.O., Bilde, M. and Swietlicki, E. (2010) An Evaluation and Comparison of Cloud Condensation Nucleus Activity Models: Predicting Particle Critical Saturation from Growth at Subsaturation. Journal of Geophysical Research: Atmospheres, 115, Published Online.
http://dx.doi.org/10.1029/2010JD014391

[10]   Köhler, H. (1936) The Nucleus in and the Growth of Hygroscopic Droplets. Transactions of the Faraday Society, 32, 1152-1161.
http://dx.doi.org/10.1039/tf9363201152

[11]   Petters, M.D. and Kreidenweis, S.M. (2007) A Single Parameter Representation of Hygroscopic Growth and Cloud Condensation Nucleus Activity. Atmospheric Chemistry and Physics, 7, 1961-1971.
http://dx.doi.org/10.5194/acp-7-1961-2007

[12]   Wex, H., Hennig, T., Salma, I., Ocskay, R., Kiselev, A., Henning, S., Massling, A., Wiedensohler, A. and Stratmann, F. (2007) Hygroscopic Growth and Measured and Modeled Critical Super-Saturations of an Atmospheric HULIS Sample. Geophysical Research Letters, 34, Published Online.
http://dx.doi.org/10.1029/2006GL028260

[13]   Berg, H.O., Swietlicki, E. and Krejci, R. (1998) Hygroscopic Growth of Aerosol Particles in the Marine Boundary Layer over the Pacific and Southern Oceans during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research: Atmospheres, 103, 16535-16545.

[14]   Swietlicki, E., Zhou, J.C., Covert, D.S., Hameri, K., Busch, B., Väkeva, M., Dusek, U., Berg, O.H., Wiedensohler, A., Aalto, P., Makela, J., Martinsson, B.G., Papaspiropoulos, G., Mentes, B., Frank, G. and Stratmann, F. (2000) Hygroscopic Properties of Aerosol Particles in the Northeastern Atlantic during ACE-2. Tellus B, 52, 201-227.
http://dx.doi.org/10.1034/j.1600-0889.2000.00036.x

[15]   Maßling, A., Wiedensohler, A., Busch, B., Neusüß, C., Quinn, P., Bates, T. and Covert, D. (2003) Hygroscopic Properties of Different Aerosol Types over the Atlantic and Indian Oceans. Atmospheric Chemistry and Physics, 3, 1377-1397.
http://dx.doi.org/10.5194/acp-3-1377-2003

[16]   Andreae, M.O. and Rosenfeld, D. (2008) Aerosol-Cloud-Precipitation Interactions, Part 1. The Nature and Sources of Cloud-Active Aerosols. Earth-Science Reviews, 89, 13-41.
http://dx.doi.org/10.1016/j.earscirev.2008.03.001

[17]   Gunthe, S.S., King, S.M., Rose, D., Chen, Q., Roldin, P., Farmer, D.K., Jimenez, J.L., Artaxo, P., Andreae, M.O., Martin, S.T. and Pöschl, U. (2009) Cloud Condensation Nuclei in Pristine Tropical Rainforest Air of Amazonia: Size-Resolved Measurements and Modeling of Atmospheric Aerosol Composition and CCN Activity. Atmospheric Chemistry and Physics, 9, 7551-7575.
http://dx.doi.org/10.5194/acp-9-7551-2009

[18]   Winter, B. and Chylek, P. (1997) Contribution of Sea Salt Aerosol to the Planetary Clear-Sky Albedo. Tellus B, 49, 72-79.
http://dx.doi.org/10.1034/j.1600-0889.49.issue1.5.x

[19]   Gong, S.L., Barrie, L.A. and Blancbet, J.P. (1997) Modeling Sea-Salts Aerosols in the Atmosphere: 1. Mode1 Development. Journal of Geophysical Research: Atmospheres, 102, 3805-3818.
http://dx.doi.org/10.1029/96JD02953

[20]   Kammermann, L., Gysel, M., Weingartner, E. and Baltensperger, U. (2010) 13-Month Climatology of the Aerosol Hygroscopicity at the Free Tropospheric Site Jungfraujoch (3580 m a.s.l.). Atmospheric Chemistry and Physics, 10, 10717-10732.
http://dx.doi.org/10.5194/acp-10-10717-2010

[21]   Pahlow, M., Feingold, G., Jefferson, A., Andrews, E., Ogren, J.A., Wang, J., Lee, Y.N., Ferrare, R.A. and Turner, D.D. (2006) Comparison between Lidar and Nephelometer Measurements of Aerosol Hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement Site. Journal of Geophysical Research: Atmospheres, 111, Published Online.
http://dx.doi.org/10.1029/2004JD005646

[22]   Kim, J., Yoon, S.C., Jefferson, A. and Kim, S.W. (2006) Aerosol Hygroscopic Properties during Asian Dust, Pollution, and Biomass Burning Episodes at Gosan, Korea in April 2001. Atmospheric Environment, 40, 1550-1560.
http://dx.doi.org/10.1016/j.atmosenv.2005.10.044

[23]   Schmidhauser, R., Zieger, P., Weingartner, E., Gysel, M., DeCarlo, P.F. and Baltensperger, U (2009) Aerosol Light Scattering at High Relative Humidity at a High Alpine Site (Jungfraujoch). European Aerosol Conference, Karlsruhe, 6-11 September 2009, Abstract T047A07.

[24]   Fierz-Schmidhauser, R., Zieger, P., Vaishya, A., Monahan, C., Bialek, J., O’Dowd, C.D., Jennings, S.G., Baltensperger, U. and Weingartner, E. (2010) Light Scattering Enhancement Factors in the Marine Boundary Layer (Mace Head, Ireland). Journal of Geophysical Research: Atmospheres, 115, Published Online.
http://dx.doi.org/10.1029/2009JD013755

[25]   Fierz-Schmidhauser, R., Zieger, P., Gysel, M., Kammermann, L., DeCarlo, P. F., Baltensperger, U. and Weingartner, E. (2010) Measured and Predicted Aerosol Light Scattering Enhancement Factors at the High Alpine Site Jungfraujoch. Atmospheric Chemistry and Physics, 10, 2319-2333.
http://dx.doi.org/10.5194/acp-10-2319-2010

[26]   Zieger, P., Weingartner, E., Henzing, J., Moerman, M., deLeeuw, G., Mikkilä, J., Ehn, M., Petäjä, T., Clémer, K., van Roozendael, M., Yilmaz, S., Frieß, U., Irie, H., Wagner, T., Shaiganfar, R., Beirle, S., Apituley, A., Wilson, K. and Baltensperger, U. (2011) Comparison of Ambient Aerosol Extinction Coefficients Obtained from in-Situ, MAX-DOAS and LIDAR Measurements at Cabauw. Atmospheric Chemistry and Physics, 11, 2603-2624.
http://dx.doi.org/10.5194/acp-11-2603-2011

[27]   Hess, M., Koepke, P. and Schult, I. (1998) Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bulletin of the American Meteorological Society, 79, 831-844.

[28]   Chylek, P. and Wong, J. (1995) Effect of Absorbing Aerosols on Global Radiation Budget. Geophysical Research Letters, 22, 929-931.

[29]   Sagan, C. and Pollack, J. (1967) Anisotropic Nonconservative Scattering and the Clouds of Venus. Journal of Geophysical Research: Atmospheres, 72, 469-477.
http://dx.doi.org/10.1029/JZ072i002p00469

[30]   Penner, J.E., Dickinson, R.E. and O’Neil, C.A. (1992) Effects of Aerosol from Biomass Burning on the Global Radiation Budget. Science, 256, 1432-1434.
http://dx.doi.org/10.1126/science.256.5062.1432

[31]   Randles, C.A., Russell, L.M. and Ramaswamy, V. (2004) Hygroscopic and Optical Properties of Organic Sea Salt Aerosol and Consequences for Climate Forcing. Geophysical Research Letters, 31, Published Online.
http://dx.doi.org/10.1029/2004GL020628

[32]   Sjogren, S., Gysel, M., Weingartner, E., Baltensperger, U., Cubison, M.J., Coe, H., Zardini, A.A., Marcolli, C., Krieger, U.K. and Peter, T. (2007) Hygroscopic Growth and Water Uptake Kinetics of Two-Phase Aerosol Particles Consisting of Ammonium Sulfate, Adipic and Humic Acid Mixtures. Journal of Aerosol Science, 38, 157-171,
http://dx.doi.org/10.1016/j.jaerosci.2006.11.005

[33]   Stokes, R.H. and Robinson, R.A. (1966) Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria. Journal of Physical Chemistry, 70, 2126-2130.
http://dx.doi.org/10.1021/j100879a010

[34]   Meyer, N.K., Duplissy, J., Gysel, M., Metzger, A., Dommen, J., Weingartner, E., Alfarra, M.R., Prevot, A.S.H., Fletcher, C., Good, N., McFiggans, G., Jonsson, A.M., Hallquist, M., Baltensperger, U. and Ristovski, Z.D. (2009) Analysis of the Hygroscopic and Volatile Properties of Ammonium Sulphate Seeded and Unseeded SOA Particles. Atmospheric Chemistry and Physics, 9, 721-732.
http://dx.doi.org/10.5194/acp-9-721-2009

[35]   Stock, M., Cheng, Y.F., Birmili, W., Massling, A., Wehner, B., Müller, T., Leinert, S., Kalivitis, N., Mihalopoulos, N. and Wiedensohler, A. (2011) Hygroscopic Properties of Atmospheric Aerosol Particles over the Eastern Mediterranean: Implications for Regional Direct Radiative Forcing under Clean and Polluted Conditions. Atmospheric Chemistry and Physics, 11, 4251-4271.
www.atmos-chem-phys.net/11/4251/2011/ http://dx.doi.org/10.5194/acp-11-4251-2011

[36]   Duplissy, J., DeCarlo, P.F., Dommen, J., Alfarra, M.R., Metzger, A., Barmpadimos, I., Prevot, A.S.H., Weingartner, E., Tritscher, T., Gysel, M., Aiken, A.C., Jimenez, J.L., Canagaratna, M.R., Worsnop, D.R., Collins, D.R., Tomlinson, J. and Baltensperger, U. (2011) Relating Hygroscopicity and Composition of Organic Aerosol Particulate Matter. Atmospheric Chemistry and Physics, 11, 1155-1165.
http://www.atmos-chem-phys.net/11/1155/2011/
http://dx.doi.org/10.5194/acp-11-1155-2011


[37]   Meier, J., Wehner, B., Massling, A., Birmili, W., Nowak, A., Gnauk, T., Brüggemann, E., Herrmann, H., Min, H. and Wiedensohler, A. (2009) Hygroscopic Growth of Urban Aerosol Particles in Beijing (China) during Wintertime: A Comparison of Three Experimental Methods. Atmospheric Chemistry and Physics, 9, 6865-6880.
http://www.atmos-chem-phys.net/9/6865/2009/
http://dx.doi.org/10.5194/acp-9-6865-2009


[38]   Sullivan, R.C., Moore, M.J.K., Petters, M.D., Kreidenweis, S.M., Roberts, G.C. and Prather, K.A. (2009) Effect of Chemical Mixing State on the Hygroscopicity and Cloud Nucleation Properties of Calcium Mineral Dust Particles. Atmospheric Chemistry and Physics, 9, 3303-3316.
http://dx.doi.org/10.5194/acp-9-3303-2009

[39]   Rose, D., Gunthe, S.S., Mikhailov, E., Frank, G.P., Dusek, U., Andreae, M.O. and Pöschl, U. (2008) Calibration and Measurement Uncertainties of a Continuous-Flow Cloud Condensation Nuclei Counter (DMT-CCNC): CCN Activation of Ammonium Sulfate and Sodium Chloride Aerosol Particles in Theory and Experiment. Atmospheric Chemistry and Physics, 8, 1153-1179.
http://dx.doi.org/10.5194/acp-8-1153-2008

[40]   Poschl, U., Rose, D. and Andreae, M.O. (2009) Climatologies of Cloudrelated Aerosols. Part 2: Particle Hygroscopicity and Cloud Condensation Nuclei Activity. In: Heintzenberg, J. and Charlson, R.J., Eds., Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, MIT Press, Cambridge, 58-72.

[41]   Christensen, S.I. and Petters, M.D. (2012) The Role of Temperature in Cloud Droplet Activation. Journal of Physical Chemistry A, 116, 9706-9717.
http://dx.doi.org/10.1021/jp3064454

[42]   Niedermeier, D., Wex, H., Voigtländer, J., Stratmann, F., Brüggemann, E., Kiselev, A., Henk, H. and Heintzenberg, J. (2008) LACIS-Measurements and Parameterization of Sea-Salt Particle Hygroscopic Growth and Activation. Atmospheric Chemistry and Physics, 8, 579-590.
http://dx.doi.org/10.5194/acp-8-579-2008

[43]   Petters, M.D., Wex, H., Carrico, C.M., Hallbauer, E., Massling, A., McMeeking, G.R., Poulain, L., Wu, Z., Kreidenweis, S.M. and Stratmann, F. (2009) Towards Closing the Gap between Hygroscopic Growth and Activation for Secondary Organic Aerosol: Part 2 Theoretical Approaches. Atmospheric Chemistry and Physics, 9, 3999-4009.
http://dx.doi.org/10.5194/acp-9-3999-2009

[44]   Liu, P.F., Zhao, C.S., Göbel, T., Hallbauer, E., Nowak, A., Ran, L., Xu, W.Y., Deng, Z.Z., Ma, N., Mildenberger, K., Henning, S., Stratmann, F. and Wiedensohler, A. (2011) Hygroscopic Properties of Aerosol Particles at High Relative Humidity and Their Diurnal Variations in the North China Plain. Atmospheric Chemistry and Physics Discussions, 11, 2991-3040.
http://dx.doi.org/10.5194/acpd-11-2991-2011

[45]   Birmili, W., Nowak, A., Schwirn, K., Lehmann, K., et al. (2004) A New Method to Accurately Relate Dry and Humidified Number Size Distributions of Atmospheric Aerosols. Journal of Aerosol Science, 1, 15-16.

[46]   Kasten, F. (1969) Visibility Forecast in the Phase of Pre-Condensation. Tellus, 21, 631-635.

[47]   Gysel, M., McFiggans, G.B. and Coe, H. (2009) Inversion of Tandem Differential Mobility Analyser (TDMA) Measurements. Journal of Aerosol Science, 40, 134-151.
http://dx.doi.org/10.1016/j.jaerosci.2008.07.013

[48]   Putaud, J.P. (2012) Interactive Comment on “Aerosol Hygroscopicity at Ispra EMEP-GAW Station” by M. Adam et al. Atmospheric Chemistry and Physics Discussions, 12, C200-C202.

[49]   Jeong, M.J, Li, Z., Andrews, E. and Tsay, S.C. (2007) Effect of Aerosol Humidification on the Column Aerosol Optical Thickness over the Atmospheric Radiation Measurement Southern Great Plains Site. Journal of Geophysical Research: Atmospheres, 112, Published Online.
http://dx.doi.org/10.1029/2006JD007176

[50]   Doherty, et al. (2005) A Comparison and Summary of Aerosol Optical Properties as Observed in Situ from Aircraft, ship and Land during ACE-Asia. Journal of Geophysical Research: Atmospheres, 110, Published Online.
http://dx.doi.org/10.1029/2004JD004964

[51]   Quinn, P.K., et al. (2005) Impact of Particulate Organic Matter on the Relative Humidity Dependence of Light Scattering: A Simplified Parameterization. Geophysical Research Letters, 32, Published Online.
http://dx.doi.org/10.1029/2005GL024322

[52]   Gassó, S., et al. (2000) Influence of Humidity on the Aerosol Scattering Coefficient and Its Effect on the Upwelling Radiance during ACE-2. Tellus B, 52, 546-567.

[53]   Clarke, A., et al. (2007) Biomass Burning and Pollution Aerosol over North America: Organic Components and Their Influence on Spectral Optical Properties and Humidification Response. Journal of Geophysical Research: Atmospheres, 112, Published Online.
http://dx.doi.org/10.1029/2006JD007777

[54]   Hänel, G. (1976) The Properties of Atmospheric Aerosol Particles as Functions of Relative Humidity at Thermodynamic Equilibrium with Surrounding Moist Air. Advances in Geophysics, 19, 73-188.
http://dx.doi.org/10.1016/S0065-2687(08)60142-9

[55]   Ångström, A. (1961) Techniques of Determining the Turbidity of the Atmosphere. Tellus, 13, 214-223.
http://dx.doi.org/10.1111/j.2153-3490.1961.tb00078.x

[56]   King, M.D. and Byrne, D.M. (1976) A Method for Inferring Total Ozone Content from Spectral Variation of Total Optical Depth Obtained with a Solar Radiometer. Journal of the Atmospheric Sciences, 33, 2242-2251.
http://dx.doi.org/10.1175/1520-0469(1976)033<2242:AMFITO>2.0.CO;2

[57]   Eck, T.F., Holben, B.N., Reid, J.S., Dubovic, O., Smirnov, A., O’Neil, N.T., Slutsker, I. and Kinne, S. (1999) Wavelength Dependence of the Optical Depth of Biomass Burning, Urban and Desert Dust Aerosols. Journal of Geophysical Research: Atmospheres, 104, 31333-31349.

[58]   Eck, T.F., Holben, B.N., Ward, D.E., Dubovic, O., Reid, J.S., Smirnov, A., Mukelabai, M.M., Hsu, N.C., O’ Neil, N.T. and Slutsker, I. (2001) Characterization of the Optical Properties of Biomass Burning Aerosols in Zambia during the 1997 ZIBBEE Field Campaign. Journal of Geophysical Research: Atmospheres, 106, 3425-3448.
http://dx.doi.org/10.1029/2000JD900555

[59]   Eck, T.F., Holben, B.N., Dubovic, O., Smirnov, A., Slutsker, I., Lobert, J.M. and Ramanathan, V. (2001) Column-Integrated Aerosol Optical Properties over the Maldives during the Northeast Monsoon for 1998-2000. Journal of Geophysical Research: Atmospheres, 106, 28555-28566.

[60]   Kaufman, Y.J. (1993) Aerosol Optical Thickness and Atmospheric Path Radiance. Journal of Geophysical Research: Atmospheres, 98, 2677-2992.
http://dx.doi.org/10.1029/92JD02427

[61]   O’Neill, N.T., Dubovic, O. and Eck, T.F. (2001) Modified Ångström Exponent for the Characterization of Submicrometer Aerosols. Applied Optics, 40, 2368-2375.
http://dx.doi.org/10.1364/ao.40.002368

[62]   O’Neill, N.T., Eck, T.F., Smirnov, A., Holben, B.N. and Thulasiraman, S. (2003) Spectral Dis-Crimination of Coarse and Fine Mode Optical Depth. Journal of Geophysical Research: Atmospheres, 198, Published Online.

[63]   Pedrós, R., Martinez-Lozano, J.A., Utrillas, M.P., Gómez-Amo, J.L. and Tena, F. (2003) Column-Integrated Aerosol, Optical Properties from Ground-Based Spectroradiometer Measurements at Barrax (Spain) during the Digital Airborne Imaging Spectrometer Experiment (DAISEX) Campaigns. Journal of Geophysical Research: Atmospheres, 108, Published Online.
http://dx.doi.org/10.1029/2002JD003331

[64]   Kaskaoutis, D.G. and Kambezidis, H.D. (2006) Investigation on the Wavelength Dependence of the Aerosol Optical Depth in the Athens Area. Quarterly Journal of the Royal Meteorological Society, 132, 2217-2234.
http://dx.doi.org/10.1256/qj.05.183

[65]   Schmid, B., Hegg, D.A., Wang, J., Bates, D., Redemann, J., Russell, P.B., Livingston, J.M., Jonsson, H.H., Welton, E.J., Seinfeld, J.H., Flagan, R.C., Covert, D.S., Dubovik, O., Jefferson, A., (2003). Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor during ACE-Asia Using Airborne Sun Photometer and Airborne in Situ and Ship-Based Lidar Measurements. Journal of Geophysical Research: Atmospheres, 108, Published Online.
http://dx.doi.org/10.1029/2002JD003361

[66]   Martinez-Lozano, J.A., Utrillas, M.P., Tena, F., Pedros, R., Canada, J., Bosca, J.V., Lorente, J., (2001) Aerosol Optical Characteristics from Summer Campaign in an Urban Coastal Mediterranean Area. IEEE Transactions on Geoscience and Remote Sensing, 39, 1573-1585.
http://dx.doi.org/10.1109/36.934089

[67]   Aspens, D.E. (1982) Local-Field Effect and Effective-Medium Theory: A Microscopic Perspective. American Association of Physics Teachers, 50, 704-709.
http://dx.doi.org/10.1119/1.12734

[68]   Heller, W. (1945) The Determination of Refractive Index of Colloidal Particles by Means of a New Mixture Rule or from Measurements of Light Scattering. Physical Review, 68, 5-10.
http://dx.doi.org/10.1103/PhysRev.68.5

[69]   Wang, J. and Martin, S.T. (2007) Satellite Characterization of Urban Aerosols: Importance of Including Hygroscopicity and Mixing State in the Retrieval Algorithms. Journal of Geophysical Research: Atmospheres, 112, Published Online.
http://dx.doi.org/10.1029/2006JD008078

[70]   Shettle, E.P. and Fenn, R.W. (1979) Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties. Optical Physics Division, Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass.

[71]   D’Almeida, G.A., Koepke, P. and Shettle, E.P. (1991) Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak Pub, Hampton, 561 p

[72]   Lorentz, H.A. (1880) Ueber die Beziehungzwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Annalen der Physik, 245, 641-665.
http://dx.doi.org/10.1002/andp.18802450406

[73]   Lorenz, L. (1880) Ueber die Refractionconstante. Annalen der Physik, 247, 70-103.
http://dx.doi.org/10.1002/andp.18802470905

[74]   Whitby, K. (1978) The Physical Characteristics of Sulfur Aerosols. Atmospheric Environment, 12, 135-159.
http://dx.doi.org/10.1016/0004-6981(78)90196-8

[75]   Seinfeld, J.H. and Pandis, S.N. (1998) Atmospheric Chemistry and Physics. Wiley-Interscience Publication, Hoboken.

[76]   Kusmierczyk-Michulec, J. (2009) Ångström Coefficient as an Indicator of the Atmospheric Aerosol Type for a Well-Mixed Atmospheric Boundary Layer: Part 1: Model Development. Oceanologia, 51, 5-38.
http://dx.doi.org/10.5697/oc.51-1.005

[77]   Fitzgerald, J.W. (1975) Approximation Formulas for the Equilibrium Size of an Aerosol Particle as a Function of Its Dry Size and Composition and Ambient Relative Humidity. Journal of Applied Meteorology, 14, 1044-1049.
http://dx.doi.org/10.1175/1520-0450(1975)014<1044:AFFTES>2.0.CO;2

[78]   Tang, I.N. (1996) Chemical and Size Effects of Hygroscopic Aerosols on Light Scattering Coefficients. Journal of Geophysical Research: Atmospheres, 101, 19245-19250.
http://dx.doi.org/10.1029/96JD03003

[79]   Liou, K.N. (2002) An Introduction to Atmospheric Radiation. Elsevier, New York, 583 p.

 
 
Top