Identities of Symmetry for q-Euler Polynomials

References

[1] E. Deeba and D. Rodriguez, Stirling’s and Bernoulli numbers, Amer. Math. Monthly 98 (1991), 423-426.
doi:10.2307/2323860

[2] F. T. Howard, Applications of a recurrence for the Bernoulli numbers, J. Number Theory 52(1995), 157-172.
doi:10.1006/jnth.1995.1062

[3] D. S. Kim, Identities of symmetry for q-Bernoulli polynomials, submitted.
doi:10.1080/10236190801943220

[4] D. S. Kim and K. H. Park, Identities of symmetry for Bernoulli polynomials arising from quotients of Volkenborn integrals invariant under S3, submitted.

[5] T. Kim, Symmetry p-adic invariant integral on for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), 1267-1277.

[6] T. Kim, On the symmetries of the q-Bernoulli polynomials, Abstr. Appl. Anal. 2008(2008), 7 pages(Article ID 914367).

[7] T. Kim, K. H. Park, and K. W. Hwang, On the identities of symmetry for the ζ-Euler polynomials of higher-order , Adv. Difference Equ. 2009(2009), 9 pages (Article ID 273545).

[8] H. Tuenter, A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), 258-261. doi:10.2307/2695389

[9] S. Yang, An identity of symmetry for the Bernoulli polynomials, Discrete Math. 308 (2008), 550-554.
doi:10.1016/j.disc.2007.03.030