OJDM  Vol.1 No.1 , April 2011
Factoring Elementary p-Groups for p ≤ 7
Abstract: It is an open problem if an elementary p-group of rank k ≥ 3 does admit full-rank normalized factorization into two of its subsets such that one of the factors has p elements. The paper provides an answer in the p ≤ 7 special case.
Cite this paper: nullS. Szabó, "Factoring Elementary p-Groups for p ≤ 7," Open Journal of Discrete Mathematics, Vol. 1 No. 1, 2011, pp. 1-5. doi: 10.4236/ojdm.2011.11001.

[1]   R. Carraghan and P. M. Pardalos, “An exact algorithm for the maximum clique problem,” Operation Research Letters 9 (1990), 375-382. doi:10.1016/0167-6377(90)90057-C

[2]   K. Corrádi, S. Szabó and P. Hermann, “A character free proof for Rédei's theorem,” Mathematica Pannonica 20 (2009), 3-15.

[3]   P. R. J. ?sterg? rd, “A fast algorithm for the maximum clique problem,” Discrete Applied Mathematics 120 (2002), 195-205.

[4]   L. Rédei, Lückenhafte Polynome über endlichen K?rpern, Birkh?user Verlag, Basel 1970, (English translation: Lacunary Polynomi-als over Finite Fields, North-Holland, Amsterdam, 1973.)

[5]   A. D. Sands, “On the factorisation of finite abelian groups,” Acta Math. Acad. Sci. Hung. 8 (1957), 65-86. doi:10.1007/BF02025232

[6]   S. Szabó and A. D. Sands, “Factoring Groups into Subsets,” CRC Press, Taylor and Francis Group, Boca Raton, 2009.

[7]   S. Szabó and C. Ward, “Factoring elementary groups of prime cube order into subsets,” Mathematics of Computation 67 (1998), 1199-1206. doi:10.1090/S0025-5718-98-00929-6