[1] Claus, H. (2004) Laccases: Structure, Reactions, Distribution. Micron, 35, 93-96.
http://dx.doi.org/10.1016/j.micron.2003.10.029
[2] Yoshida, H. (1883) Chemistry of Lacquer (Urushi) Part 1. Journal of the Chemical Society, 43, 472-486.
http://dx.doi.org/10.1039/ct8834300472
[3] Bertrand, G. (1896) Sur la presence simultanee de la laccase et de la tyrosinase dans le suc de quelques champignons. Comptes rendus hebdomadaires des seances de l’Academie des sciences, 123, 463-465.
[4] Givaudan, A., Effosse, A., Faure, D., Potier, P., Bouillant, M. and Bally, R. (1993) Polyphenol Oxidase from Apospirillum lipoferum Isolated from the Rhizosphere: Evidence for a Laccase in Non-Motile Strains of Azospirillum lipoferum. FEMS Microbiology Letters, 108, 205-210.
http://dx.doi.org/10.1111/j.1574-6968.1993.tb06100.x
[5] Piscitelli, A., Pezzella, C., Giardina, P., Faraco, V. and Giovanni, S. (2010) Heterologous Laccase Production and Its Role in Industrial Applications. Bioengineered Bugs, 1, 252-262.
[6] Bugg, T.D.H., Ahmad, M., Hardiman, E.M. and Sing, R. (2011) The Emerging Role for Bacteria in Lignin Degradation and Bio-Product Formation. Current Opinion in Biotechnology, 22, 394-400.
http://dx.doi.org/10.1016/j.copbio.2010.10.009
[7] Strong, P.J. and Claus, H. (2011) Laccase: A Review of Its Past and Its Future in Bioremediation. Critical Reviews in Environmental Science and Technology, 41, 373-434.
http://dx.doi.org/10.1080/10643380902945706
[8] Bourbonnais, R. and Paice, M.G. (1990) Oxidation of Non-Phenolic Substrates—An Expanded Role for Laccase in Lignin Biodegradation. FEBS Letters, 267, 99-102.
http://dx.doi.org/10.1016/0014-5793(90)80298-W
[9] Thurston, C.F. (1994) The Structure and Function of Fungal Laccases. Microbiology, 1, 19-26.
http://dx.doi.org/10.1099/13500872-140-1-19
[10] Gianfreda, L., Xu, F. and Bollag, J. (1999) Laccases: A Useful Group of Oxidoreductive Enzymes. Bioremediation Journal, 3, 1-26.
http://dx.doi.org/10.1080/10889869991219163
[11] Baldrian, P. (2005) Fungal Laccases—Occurrence and Properties. FEMS Microbiology Reviews, 30, 215-242.
http://dx.doi.org/10.1111/j.1574-4976.2005.00010.x
[12] Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S. and Sannia, G. (2010) Laccases: A Never-Ending Story. Cellular and Molecular Life Sciences, 67, 369-385.
http://dx.doi.org/10.1007/s00018-009-0169-1
[13] Galli, C., Gentili, P. and Jolivalt, C. (2011) How Is the Reactivity of Laccase Affected by Single-Point Mutations? Engineering Laccase for Improved Activity towards Sterically Demanding Substrates. Applied Microbiology and Biotechnology, 91, 123-131.
http://dx.doi.org/10.1007/s00253-011-3240-4
[14] Janusz, G., Kucharzyk, K.H., Pawlik, A., Staszczak, M. and Paszczynski, A.J. (2013) Fungal Laccase, Manganese Peroxidase and Lignin Peroxidase: Gene Expression and Regulation. Enzyme and Microbial Technology, 52, 1-12.
http://dx.doi.org/10.1016/j.enzmictec.2012.10.003
[15] Claus, H. (2003) Laccases and Their Occurrence in Prokaryotes. Archives of Microbiology, 179, 145-150.
[16] Sharma, P., Goel, R. and Capalash, N. (2006) Bacterial Laccases. World Journal of Microbiology and Biotechnology, 23, 823-832.
http://dx.doi.org/10.1007/s11274-006-9305-3
[17] Ball, A.S., Betts, W.B. and McCarthy, A.J. (1989) Degradation of Lignin-Related Compounds by Actinomycetes. Applied and Environmental Microbiology, 55, 1642-1644.
[18] Kirby, R. (2005) Actinomycetes and Lignin Degradation. Advances in Applied Microbiology, 58, 125-168.
http://dx.doi.org/10.1016/S0065-2164(05)58004-3
[19] Arias, M.E., Arenas, M., Rodriguez, J., Soliveri, J., Ball, A.S. and Hernandez, M. (2003) Kraft Pulp Biobleaching and Mediated Oxidation of a Nonphenolic Substrate by Laccase from Streptomyces cyaneus CECT 3335. Applied and Environmental Microbiology, 69, 1953-1958.
http://dx.doi.org/10.1128/AEM.69.4.1953-1958.2003
[20] Niladevi, K.N., Jacob, N. and Prema, P. (2008) Evidence for a Halotolerant-Alkaline Laccase in Streptomyces psammoticus: Purification and Characterization. Process Biochemistry, 43, 654-660.
http://dx.doi.org/10.1016/j.procbio.2008.02.002
[21] Gunne, M. and Urlacher, V.B. (2012) Characterization of the Alkaline Laccase Ssl1 from Streptomyces sviceus with Unusual Properties Discovered by Genome Mining. PloS ONE, 7, 1-8.
[22] Kumar, S.V., Phale, P.S., Durani, S. and Wangikar, P.P. (2003) Combined Sequence and Structure Analysis of the Fungal Laccase Family. Biotechnology and Bioengineering, 83, 386-394.
http://dx.doi.org/10.1002/bit.10681
[23] Sakurai, T. and Kataoka, K. (2007) Basic and Applied Features of Multicopper Oxidases, CueO, Bilirubin Oxidase, and Laccase. The Chemical Record, 7, 220-229.
http://dx.doi.org/10.1002/tcr.20125
[24] Reiss, R., Ihssen, J., Richter, M., Eichhorn, E., Schilling, B. and Thony-Meyer, L. (2013) Laccase versus Laccase-Like Multi-Copper Oxidase: A Comparative Study of Similar Enzymes with Diverse Substrate Spectra. PLoS ONE, 8, e65633.
http://dx.doi.org/10.1371/journal.pone.0065633
[25] Whitman, W.B., Goodfellow, M., Kampfer, P., Busse, H.J., Trujillo, M.E., Ludwig, W. and Suzuki, K.I. (2012) Bergey’s Manual of Systematic Bacteriology: The Actinobacteria. Springer Publishing Company, New York.
[26] Goodfellow, M. and Williams, S.T. (1983) Ecology of Actinomycetes. Annual Review of Microbiology, 37, 189-216.
http://dx.doi.org/10.1146/annurev.mi.37.100183.001201
[27] Lee, J. (1997) Biological Conversion of Lignocellulosic Biomass to Ethanol. Journal of Biotechnology, 56, 1-24.
http://dx.doi.org/10.1016/S0168-1656(97)00073-4
[28] Godden, B., Ball, A.S., Helvenstein, P., McCarthy, A.J. and Penninckx, M. (1992) Towards Elucidation of the Lignin Degradation Pathway in Actinomycetes. Microbiology, 138, 2441-2448.
http://dx.doi.org/10.1099/00221287-138-11-2441
[29] Taylor, C.R., Hardiman, E.M., Ahmad, M., Sainsbury, P.D., Norris, P.R. and Bugg, T.D.H. (2012) Isolation of Bacterial Strains Able to Metabolize Lignin from Screening of Environmental Samples. Journal of Applied Microbiology, 113, 521-530.
http://dx.doi.org/10.1111/j.1365-2672.2012.05352.x
[30] Berdy, J. (2005) Bioactive Microbial Metabolites. The Journal of Antibiotics, 58, 1-26.
http://dx.doi.org/10.1038/ja.2005.1
[31] Goodfellow, M. and Fiedler, H.P. (2010) A Guide to Successful Bioprospecting: Informed by Actinobacterial Systematic. Antonie van Leeuwenhoek, 98, 119-142.
http://dx.doi.org/10.1007/s10482-010-9460-2
[32] Prakash, D., Nawani, N., Prakash, M., Bodas, M., Mandal, A., Khetmalas, M. and Kapadnis, B. (2013) Actinomycetes: A Repertory of Green Catalysts with a Potential Revenue Resource. BioMed Research International, 2013, Article ID: 264020.
http://dx.doi.org/10.1155/2013/264020
[33] Endo, K., Hayashi, Y., Hibi, T., Hosono, K., Beppu, T. and Ueda, K. (2003) Enzymological Characterization of EpoA, a Laccase-Like Phenol Oxidase Produced by Streptomyces griseus. The Journal of Biochemistry, 133, 671-677.
http://dx.doi.org/10.1093/jb/mvg086
[34] Suzuki, T., Endo, K., Ito, M., Tsujibo, H., Miyamoto, K. and Inamori, Y. (2003) A Thermostable Laccase from Streptomyces lavendulae REN-7: Purification, Characterization, Nucleotide Sequence, and Expression. Bioscience Biotechnology and Biochemistry, 67, 2167-2175.
http://dx.doi.org/10.1271/bbb.67.2167
[35] Machczynski, M.C., Vijgenboom, E., Samyn, B. and Canters, G.W. (2004) Characterization of SLAC: A Small Laccase from Streptomyces coelicolor with Unprecedented Activity. Protein Science, 13, 2388-2397.
http://dx.doi.org/10.1110/ps.04759104
[36] Molina-Guijarro, J.M., Perez, J., Munoz-Dorado, J., Guillen, F., Moya, R., Hernandez, M. and Arias, M.E. (2009) Detoxification of Azo Dyes by a Novel pH-Versatile, Salt-Resistant Laccase from Streptomyces ipomoea. International Microbiology, 12, 13-21.
[37] Lu, L., Zeng, G., Fan, C., Ren, X., Wang, C., Zhao, Q., Zhang, J., Chen, M., Chen, A. and Jiang, M. (2013) Characterization of a Laccase-Like Multicopper Oxidase from Newly Isolated Streptomyces sp. C1 in Agricultural Waste Compost and Enzymatic Decolorization of Azo Dyes. Biochemical Engineering Journal, 72, 70-76.
http://dx.doi.org/10.1016/j.bej.2013.01.004
[38] Fernandes, T.A.R., Silveira, W.B., Passos, F.M.L. and Zucchi, T.D. (2013) Characterization of a Thermotolerant Laccase Produced by Streptomyces sp. SBo86. Annals of Microbiology, Published Online.
http://dx.doi.org/10.1007/s13213-013-0781-z
[39] Dube, E., Shareck, F., Hurtubise, Y., Daneault, C. and Beauregard, M. (2008) Homologous Cloning, Expression, and Characterisation of a Laccase from Streptomyces coelicolor and Enzymatic Decolourisation of an Indigo Dye. Applied Microbiology and Biotechnology, 79, 597-603.
http://dx.doi.org/10.1007/s00253-008-1475-5
[40] Skalova, T., Dohnalek, J., Østergaard, L.H., Østergaard, P.R., Kolenko, P., Duskova, J., Stepankova, A. and Hasek, J. (2009) The Structure of the Small Laccase from Streptomyces coelicolor Reveals a Link between Laccases and Nitrite Reductases. Journal of Molecular Biology, 385, 1165-1178.
http://dx.doi.org/10.1016/j.jmb.2008.11.024
[41] Alexandre, G. and Zhulin, I.B. (2000) Laccases are Widespread in Bacteria. Trends in Biotechnology, 18, 41-42.
http://dx.doi.org/10.1016/j.jmb.2008.11.024
[42] Hakulinen, N., Kiiskinen, L.L., Kruus, K., Saloheimo, M., Paananen, A., Koivula, A. and Rouvinen, J. (2002) Crystal Structure of a Laccase from Melanocarpus albomyces with an Intact Trinuclear Copper Site. Nature Structural Biology, 9, 601-605.
[43] Valderrama, B., Oliver, P., Medrano-Soto, A. and Vazquez-Duhalt, R. (2003) Evolutionary and Structural Diversity of Fungal Laccases. Antonie van Leeuwenhoek, 84, 289-299.
http://dx.doi.org/10.1016/j.jmb.2008.11.024
[44] Ausec, L., Zakrzewski, M., Goesmann, A., Schlüter, A. and Mandic-Mulec, I. (2011) Bioinformatic Analysis Reveals High Diversity of Bacterial Genes for Laccase-Like Enzymes. PLoS ONE, 7, e25724
http://dx.doi.org/10.1371/journal.pone.0025724
[45] Couto, S.R. and Herrera, T. (2006) Industrial and Biotechnological Applications of Laccases: A Review. Biotechnology Advances, 24, 500-513.
http://dx.doi.org/10.1016/j.biotechadv.2006.04.003
[46] Kunamneni, A., Plou, F.J., Ballesteros, A. and Alcalde, M. (2008) Laccases and Their Applications: A Patent Review. Recent Patents on Biotechnology, 2, 10-24.
http://dx.doi.org/10.2174/187220808783330965
[47] Widsten, P. and Kandelbauer, A. (2008) Laccase Applications in the Forest Products Industry: A Review. Enzyme and Microbial Technology, 42, 293-307.
http://dx.doi.org/10.1016/j.enzmictec.2007.12.003
[48] Shraddha, R.S., Sehgal, S., Kamthania, M. and Kumar, A. (2011) Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications. Enzyme Research, 2011, Article ID: 217861.
[49] Orr, I.G., Hadar, Y. and Sivan, A. (2004) Colonization, Biofilm Formation and Biodegradation of Polyethylene by a Strain of Rhodococcus ruber. Applied Microbiology and Biotechnology, 65, 97-104.
[50] Sivan, A., Szanto, M. and Pavlov, V. (2006) Biofilm Development of the Polyethylene-Degrading Bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72, 346-352.
http://dx.doi.org/10.1007/s00253-005-0259-4
[51] Mor, R. and Sivan, A. (2008) Biofilm Formation and Partial Biodegradation of Polystyrene by the Actinomycete Rhodococcus ruber. Biodegradation, 19, 851-858.
http://dx.doi.org/10.1007/s10532-008-9188-0
[52] Osma, J.F., Toca-Herrera, J.L. and Rodriguez-Couto, S. (2010) Uses of Laccases in the Food Industry. Enzyme Research, 2010, Article ID: 918761.
http://dx.doi.org/10.4061/2010/918761
[53] Madhavi, V. and Lele, S.S. (2009) Laccase: Properties and Applications. Bioresources, 4, 1694-1717.
[54] Haki, G.D. and Rakshit, S.K. (2003) Developments in Industrially Important Thermostable Enzymes: A Review. Bioresource Technology, 89, 17-34.
http://dx.doi.org/10.1016/S0960-8524(03)00033-6
[55] Hilden, K., Hakala, T.K. and Lundell, T. (2009) Thermotolerant and Thermostable Laccases. Biotechnology Letters, 31, 1117-1128.
http://dx.doi.org/10.1007/s10529-009-9998-0
[56] Miyazaki, K. (2005) A Hyperthermophilic Laccase from Thermus thermophilus HB27. Extremophiles, 9, 415-425.
http://dx.doi.org/10.1007/s00792-005-0458-z
[57] Couto, S.R. and Toca-Herrera, J.L. (2007) Laccase Production at Reactor Scale by Filamentous Fungi. Biotechnology Advances, 25, 558-569.
http://dx.doi.org/10.1016/j.biotechadv.2007.07.002
[58] Li, Y., Zuo, W., Li, Y. and Wang, X. (2012) Cloning of Multicopper Oxidase Gene from Ochrobactrum sp. 531 and Characterization of Its Alkaline Laccase Activity towards Phenolic Substrates. Advances in Biological Chemistry, 2, 248-255.
http://dx.doi.org/10.4236/abc.2012.23031
[59] Niladevi, K.N. and Prema, P. (2008) Effect of Inducers and Process Parameters on Laccase Production by Streptomyces psammoticus and Its Application in Dye Decolourization. Bioresource Technology, 99, 4583-4589.
http://dx.doi.org/10.1016/j.biortech.2007.06.056
[60] Johannes, C. and Majcherczyk, A. (2000) Laccase Activity Tests and Laccase Inhibitors. Journal of Biotechnology, 78, 193-199.
http://dx.doi.org/10.1016/S0168-1656(00)00208-X
[61] Ruiz-Duenas, F.J. and Martinez, A.T. (2009) Microbial Degradation of Lignin: How a Bulky Recalcitrant Polymer Is Efficiently Recycled in Nature and How We Can Take Advantage of This. Microbial Biotechnology, 2, 164-177.
http://dx.doi.org/10.1111/j.1751-7915.2008.00078.x
[62] Harkin, J.M. and Obst, J.R. (1993) Syringaldazine, an Effective Reagent for Detecting Laccase and Peroxidase in Fungi. Experientia, 29, 381-387.
http://dx.doi.org/10.1007/BF01926734
[63] Ahmad, M., Roberts, J.N., Hardiman, E.M., Singh, R., Eltis, L.D. and Bugg, T.D.H. (2011) Identification of DypB from Rhodococcus jostii RHA1 as a Lignin Peroxidase. Biochemistry, 50, 5096-5107.
http://dx.doi.org/10.1021/bi101892z
[64] Anderson, C.R., Johnson, H.A., Caputo, N., Davis, R.E., Torpey, J.W. and Tebo, B.M. (2009) Mn(II) Oxidation Is Catalyzed by Heme Peroxidases in “Aurantimonas manganoxydans” Strain SI85-9A1 and Erythrobacter sp. Strain SD-21. Applied and Environmental Microbiology, 75, 4130-4138.
http://dx.doi.org/10.1128/AEM.02890-08
[65] Hullo, M.F., Moszer, I., Danchin, A. and Martin-Verstraete, I. (2001) CotA of Bacillus subtilis Is a Copper-Dependent Laccase. Journal of Bacteriology, 183, 5426-5430.
http://dx.doi.org/10.1128/JB.183.18.5426-5430.2001
[66] Camarero, S., Sarkar, S., Ruiz-Duenas, F.J., Martinez, M.J. and Martinez, A.T. (1999) Description of a Versatile Peroxidase Involved in the Natural Degradation of Lignin That Has Both Manganese Substrate Interaction Sites Description of a Versatile Peroxidase Involved in the Natural Degradation of Lignin That Has Both Manganese Peroxidase. The Journal of Biological Chemistry, 274, 10324-10330.
[67] Sanchez-Amat, A. and Solano, F. (1997) A Pluripotent Polyphenol Oxidase from the Melanogenic Marine Alteromonas sp. Shares Catalytic Capabilities of Tyrosinases and Laccases. Biochemical and Biophysical Research Communications, 240, 787-792.
http://dx.doi.org/10.1006/bbrc.1997.7748
[68] Castanera, R., Perez, G., Omarini, A., Alfaro, M., Pisabarro, A.G., Faraco, V., Amore, A. and Ramirez, L. (2012) Transcriptional and Enzymatic Profiling of Pleurotus ostreatus Laccase Genes in Submerged and Solid-State Fermentation Cultures. Applied and Environmental Microbiology, 78, 4037-4045.
http://dx.doi.org/10.1128/AEM.07880-11
[69] Kilaru, S., Hoegger, P.J. and Kües, U. (2006) The Laccase Multi-Gene Family in Coprinopsis cinerea Has Seventeen Different Members That Divide into Two Distinct Subfamilies. Current Genetics, 50, 45-60.
http://dx.doi.org/10.1007/s00294-006-0074-1
[70] McCaig, B.C., Meagher, R.B. and Dean, J.F.D. (2005) Gene Structure and Molecular Analysis of the Laccase-Like Multicopper Oxidase (LMCO) Gene Family in Arabidopsis thaliana. Planta, 221, 619-636.
http://dx.doi.org/10.1007/s00425-004-1472-6
[71] Luis, P., Walther, G., Kellner, H., Martin, F. and Buscot, F. (2004) Diversity of Laccase Genes from Basidiomycetes in a Forest Soil. Soil Biology and Biochemistry, 36, 1025-1036.
http://dx.doi.org/10.1016/j.soilbio.2004.02.017
[72] Sirim, D., Wagner, F., Wang, L., Schmid, R.D. and Pleiss, J. (2011) The Laccase Engineering Database: A Classification and Analysis System for Laccases and Related Multicopper Oxidases. Database, 2011, Article ID: bar006.
http://dx.doi.org/10.1093/database/bar006
[73] Hoegger, P.J., Kilaru, S., James, T.Y., Thacker, J.R. and Kües, U. (2006) Phylogenetic Comparison and Classification of Laccase and Related Multicopper Oxidase Protein Sequences. FEBS Journal, 273, 2308-2326.
http://dx.doi.org/10.1111/j.1742-4658.2006.05247.x
[74] Kellner, H., Luis, P., Zimdars, B., Kiesel, B. and Buscot, F. (2008) Diversity of Bacterial Laccase-Like Multicopper Oxidase Genes in Forest and Grassland Cambisoil Soil Samples. Soil Biology & Biochemistry, 40, 638-648.
http://dx.doi.org/10.1016/j.soilbio.2007.09.013
[75] Ausec, L., van Elsas, J.D. and Mandic-Mulec, I. (2011) Two- and Three-Domain Bacterial Laccase-Like Genes Are Present in Drained Peat Soils. Soil Biology and Biochemistry, 43, 975-983.
http://dx.doi.org/10.1016/j.soilbio.2011.01.013
[76] Dwivedi, U.N., Singh, P., Pandey, V.P. and Kumar, A. (2011) Structure-Function Relationship among Bacterial, Fungal and Plant Laccases. Journal of Molecular Catalysis B: Enzymatic, 68, 117-128.
http://dx.doi.org/10.1016/j.molcatb.2010.11.002
[77] Schlosser, D., Fritsche, W. and Grey, R. (1997) Patterns of Ligninolytic Enzymes in Trametes versicolor. Distribution of Extra- and Intracellular Enzyme Activities during Cultivation on Glucose, Wheat Straw and Beech Wood. Applied and Environmental Microbiology, 47, 412-418.
[78] Diamantidis, G., Aline, E., Bally, R. and Potier, P. (2000) Purification and Characterization of the First Bacterial Laccase in the Rhizospheric Bacterium Azospirillum lipoferum. Soil, 32, 919-927.