SNL  Vol.1 No.2 , April 2011
The Synthesis of Solvent-Free TiO2 Nanofluids through Surface Modification
Abstract: TiO2 nanoparticles with surface hydroxyl groups are treated by trimethoxysilane (CH3O)3Si(CH2)3O(CH2CH2O)6-9CH3 and a inorganic core/organic shell hybridmaterials, which shows itself a yellow viscous fluid, is obtained. We call it solvent-free TiO2 nanofliuds. Transmission electron microscopy (TEM), Fourier transform infrared spectrum (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and rheometer are adopted to characterize the product. As a result, the content of TiO2 nanoparticles in the nanofliuds is about 5.5wt%, the functionalized TiO2 nanoparticles possess better dispersion, very low viscosity and an obvious liquid-like behavior at room temperature in absence of solvent.
Cite this paper: nullP. Yu, Y. Zheng and L. Lan, "The Synthesis of Solvent-Free TiO2 Nanofluids through Surface Modification," Soft Nanoscience Letters, Vol. 1 No. 2, 2011, pp. 46-50. doi: 10.4236/snl.2011.12008.

[1]   Z. X. Yan, J. Deng and Z. M. Luo, “A Comparison Study of the Agglomeration Mechanism of Nano and Micrometer Aluminum Particles,” Materials Characterization, Vol. 61, No. 2, 2010, pp. 198-205. doi:10.1016/j.matchar.2009.11.010

[2]   S. L. Kuo, Y. C. Chen, M. D. Ger and W. H. Hwu, “Nano-Particles Dispersion Effect on Ni/Al2O3 Composite Coatings,” Materials Chemistry and Physics, Vol. 86, No. 1, 2004, pp. 5-10. doi:10.1016/j.matchemphys.2003.11.040

[3]   C. Y. Tsai, H. T. Chien, P. P. Ding, B. Chan, T. Y. Luh and P. H. Chen, “Effect of Structural Character of Gold Nanoparticles in Nanofluid on Heat Pipe Thermal Performance,” Material Letters, Vol 58, No. 9, 2004, pp. 1461-1465. doi:10.1016/j.matlet.2003.10.009

[4]   D. W. Zhou, “Heat Transfer Enhancement of Copper Nano?uid with Acoustic Cavitation,” International Journal of Heat and Mass Transfer, Vol. 47, No. 14-16, 2004, pp. 3109-3117. doi:10.1016/j.ijheatmasstransfer.2004.02.018

[5]   W. Yu, H. Q. Xie, L. F. Chen and Y. Li, “Investigation of Thermal Conductivity and Viscosity of Ethylene Glycol Based Zno Nano?uid,” Thermochimica Acta, Vol 491, No. 1-2, 2009, pp. 92-96. doi:10.1016/j.tca.2009.03.007

[6]   C. T. Nguyen, G. Roy, C. Gauthier and N. Galanis, “Heat Transfer Enhancement Using Al2O3–Water Nano?uid for an Electronic Liquid Cooling System,” Applied Thermal Engineering, Vol. 27, No. 8-9, 2007, pp. 1501-1506. doi:10.1016/j.applthermaleng.2006.09.028

[7]   D. Milanova and R. Kumar, “Heat Transfer Behavior of Silica Nanoparticles in Pool Boiling Experiment,” Journal of Heat Transfer, Vol. 130, No. 4, 2008, pp. 042401- 042407. doi:10.1115/1.2787020

[8]   M. E. Meibodi, M. Vafaie-Sefti, A. M. Rashidi, A. Amrollahi, M. Tabasi and H. S. Kalal, “The Role of Different Parameters on The Stability and Thermal Conductivity of Carbon Nanotube/Water Nano?uids,” International Communications in Heat and Mass Transfer, Vol. 37, No. 3, 2010, pp. 319-323. doi:10.1016/j.icheatmasstransfer.2009.10.004

[9]   W. T. Jiang, G. L. Ding, H. Peng and H. T. Hu, “Modeling of Nanoparticles’ Aggregation and Sedimentation in Nano?uid,” Current Applied Physics, Vol. 10, No. 3, 2010, pp. 934-941. doi:10.1016/j.cap.2009.11.076

[10]   A. N. Eiyad, “Effects of variable viscosity and thermal conductivity of Al2O3–water nano?uid on heat transfer enhancement in natural convection,” Inernational Journal of Heat Fluid Flow, Vol. 30, No. 4, 2009, pp. 679-690.

[11]   T. P. Teng, Y. H. Hung, T. C. Teng, H. E. Mo and H. G. Hsu, “The Effect of Alumina/Water Nano?uid Particle Size on Thermal Conductivity,” Applied Thermal Engineering, Vol. 30, No. 14-15, 2010, pp. 2213-2218. doi:10.1016/j.applthermaleng.2010.05.036

[12]   K. B. Anoop, T. Sundararajan and S. K. Das, “Effect of Particle Size on the Convective Heat Transfer in Nano?uid in the Developing Region,” International Journal of Heat and Mass Transfer, Vol. 52, No. 9-10, 2009, pp. 2189-2195. doi:10.1016/j.ijheatmasstransfer.2007.11.063

[13]   Y. J. Li, J. E. Zhou, S. Tung and E. Schneider, S. Q. Xi, “A Review on Development of Nano?uid Preparation and Characterization,” Powder Technology, Vol. 196, No. 2, 2009, pp. 89-101. doi:10.1016/j.powtec.2009.07.025

[14]   A. B. Bourlinos, S. R. Chowdhury, D. D. Jiang and Q. Zhang, “Weakly Solvated PEG-Functionalized Silica Nanoparticles with Liquid-Like Behavior,” Journal of Materials Science, Vol. 40, No. 18, 2005, pp. 5095-5097. doi:10.1007/s10853-005-1301-8

[15]   A. B. Bourlinos, R. Herrera, N. Chalkias, D. D. Jiang, Q. Zhang, L. A. Archer and E. P. Giannelis, “Surface-Func- Tionalized Nanoparticals with Liquid-Like Behavior,”Advanced Materials, Vol. 17, No. 2, 2005, pp. 234-237. doi:10.1002/adma.200401060

[16]   A. B. Bourlinos, S. R. Chowdhury, R. Herrera, D. D. Jiang, Q. Zhang, L. A. Archer and E. P. Giannelis, “Functionalized Nanostructures with Liquid-Like Behavior: Expanding the Gallery of Available Nanostructures,” Advanced Functional Materials, Vol. 15, No. 8, 2005, pp. 1285-1290. doi:10.1002/adfm.200500076

[17]   T. Michinobu, T. Nakanishi, J. P. Hill, M. Funahashi and K. Ariga, “Room Temperature Liquid Fullerenes: An Uncommon Morphology of C60 Derivatives,” Journal of the American Chemical Society, Vol. 128, No. 32, 2006, pp. 10384-10385. doi:10.1021/ja063866z

[18]   A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Herrera, S. H. Anastasiadis, D. Petridis and E. P. Giannelis, “Functionalized Zno Nanoparticals with Liquidlike Behavior and Their Photoluminescence Properties,” Small. Vol. 2, 2006, p. 513. doi:10.1002/smll.200500411

[19]   J. X. Zhang, Y. P. Zheng, P. Y. Yu, S. Mo and R. M. Wang, “Modified Carbon Nanotubes with Liquid-Like Behavior At 45?C,” Carbon. Vol. 47, No. 12, 2009, p. 2776. doi:10.1016/j.carbon.2009.05.036

[20]   J. X. Zhang, Y. P. Zheng, P. Y. Yu, S. Mo and R. M. Wang, “The Synthesis of Functionalized Carbon Nanotubes by Hyperbranched Poly (Amine-Ester) with Liquid-Like Behavior at Room Temperature,” Polymer. Vol. 50, No. 13, 2009, p. 2953. doi:10.1016/j.polymer.2009.04.042

[21]   J. X. Zhang, Y. P. Zheng, L. Lan, S. Mo, P. Y. Yu, W. Shi and R. M. Wang, “Direct Synthesis of Solvent-Free Multiwall Carbon Nanotubes/Silica Nonionic Nano?uid Hybrid Material,” Acs Nano, Vol. 3, No. 8, 2009, p. 2185. doi:10.1021/nn900557y

[22]   H. Y. Chen and E. Ruckenstein, “Structure and Particle Aggregation in Block Copolymer-Binary Nanoparticle Com- Posites,” Polymer, Vol. 51, No. 24, 2010, p. 5869. doi:10.1016/j.polymer.2010.10.011

[23]   H. Y. Chen and E. Ruckenstein, “Nanoparticle aggregation in the presence of a block copolymer,” Journal of Chemical Physics, Vol. 131, No. 24, 2009, article ID 244904. doi:10.1063/1.3280064

[24]   S. Q. Huang, Z. G. Sun and S. B. Li, “New Silicone Polymer,” in Chinese, Chemical Industry Press, Beijing, 2004.