Entanglement of E8E8 Exceptional Lie Symmetry Group Dark Energy, Einstein’s Maximal Total Energy and the Hartle-Hawking No Boundary Proposal as the Explanation for Dark Energy

Show more

References

[1] El Naschie, M.S. (2013) A Unified Newtonian-Relativistic Quantum Resolution of the Supposedly Missing Dark Energy of the Cosmos and the Constancy of the Speed of Light. International Journal of Modern Nonlinear Theory and Application, 2, 43-54.

http://dx.doi.org/10.4236/ijmnta.2013.21005

[2] El Naschie, M.S. (2013) From Yang-Mills photon in Curved Spacetime to Dark Energy Density. Journal of Quantum Information Science, 3, 121-126.

http://dx.doi.org/10.4236/jqis.2013.34016

[3] El Naschie, M.S. (2014) Pinched Material Einstein Spacetime Produces Accelerated Cosmic Expansion. International Journal of Astronomy and Astrophysics, 4, 80-90.

http://dx.doi.org/10.4236/ijaa.2014.41009

[4] El Naschie, M.S. (2014) Capillary Surface Energy Elucidation of the Cosmic Dark Energy-Ordinary Energy Duality. Open Journal of Fluid Dynamics, 4, 15-17.

http://dx.doi.org/10.4236/ojfd.2014.41002

[5] El Naschie, M.S. (2014) Why E Is Not Equal to mc2. Journal of Modern Physics, in Press.

[6] Linder, E., (2008) Dark Energy. “Scholarpediablog”. The Peer-Reviewed Open Access Encyclopedia, Scholarpedia, 3, Article ID: 4900.

[7] Amendola, L. and Tsujikawa, S. (2010) Dark Energy. Cambridge University Press, Cambridge.

http://dx.doi.org/10.1017/CBO9780511750823

[8] Copeland, E.J., Sami, M. and Tsujikawa, S. (2006) Dynamics of Dark Energy. arXiv: hep-th/0603057V3

[9] Coldea, R. et al. (2010) Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry. Science, 327, 177-180.

http://dx.doi.org/10.1126/science.1180085

[10] El Naschie, M.S. (2013) The Quantum Entanglement behind the Missing Dark Energy. Journal of Physics and Applications, 2, 88-96.

[11] Kheyfets, A. and Wheeler, J.A. (1986) Boundary of a Boundary Principle and Geometric Structure of Field Theories. International Journal of Theoretical Physics, 25, 573-580.

[12] Wheeler, J.A. (1989) Information, Physics, Quantum the Search for Links. The 3rd International Symposium Foundations of Quantum Mechanics, Tokyo, 310-336.

[13] Hartle, J. and Hawking, S. (1983) Wave Function of The Universe. Physical Review D, 28, Article ID: 2960.

http://dx.doi.org/10.1103/PhysRevD.28.2960

[14] Hartle, J. and Hawking, S. (2008) No-Boundary Measure of the Universe. Physical Review Letters, 100, Article ID: 201301.

http://dx.doi.org/10.1103/PhysRevLett.100.201301

[15] Henle, J.M.(1986) An Outline of Set Theory. Springer, New York.

http://dx.doi.org/10.1007/978-1-4613-8680-3

[16] Devlin, K. (1993) The Joy of Sets. Springer, New York (in Particular See p. 5).

[17] El Naschie, M.S. (2013) Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schrodinger Quantum Wave. Journal of Modern Physics, 4, 591-596.

http://dx.doi.org/10.4236/jmp.2013.45084

[18] El Naschie, M.S. (2013) Nash embedding of Witten’s M-Theory and the Hawking-Hartle Quantum Wave of Dark Energy. Journal of Modern Physics, 4, 1417-1428.

http://dx.doi.org/10.4236/jmp.2013.410170

[19] El Naschie, M.S. and Helal, A. (2013) Dark energy Explained via the Hawking-Hartle Quantum Wave and the Topology of Cosmic Crystallography. International Journal of Astronomy and Astrophysics, 3, 318-343.

http://dx.doi.org/10.4236/ijaa.2013.33037

[20] Helal, M.A., Marek-Crnjac, L. and He, J.-H. (2013) The Three Page Guide to the Most Important Results of M. S. El Naschie’s Research in E-Infinity and Quantum Physics and Cosmology. Open Journal of Microphysics, 3, 141-145.

http://dx.doi.org/10.4236/ojm.2013.34020

[21] Marek-Crnjac, L. (2013) Cantorian Space-Time Theory—The Physics of Empty Sets in Connection with Quantum Entanglement and Dark Energy. Lambert Academic Publishing, Saarbrücken.

[22] El Naschie, M.S., Marek-Crnjac, L., He, J.-H. and Helal, M.A. (2013) Computing the Missing Dark Energy of a Clopen Universe Which Is Its Own Multiverse in Addition to Being Both Flat and Curved. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 3-10.

[23] Grossman, L. (2014) Ripples of the Multiverse. New Scientist, 221, 8-10.

http://dx.doi.org/10.1016/S0262-4079(14)60557-1