Back
 SS  Vol.2 No.2 , April 2011
Partial IVC Clamping Improves Intraoperative Hemodynamic Parameters in the Rodent Portacaval Anastomosis Model
Abstract: The mechanisms involved in the development of hepatic encephalopathy still remain uncertain. The rodent portacaval shunt is a model that reproduces many of the pathological features observed in humans (1), but is a technically demanding exercise. While the traditional technique involves complete occlusion of the IVC, a c-clamp was fashioned to partially clamp the IVC thereby sustaining venous return and cardiac output. The aim of this study is to determine if the c-clamp technique provides greater hemodynamic stability and enhances the success rate of the portacaval shunt procedure. To answer this question, two experimental groups, c-clamp (N = 7) and cross-clamp (N = 7), and a sham group (N = 3) were included. Intraoperative hemodynamic parameters were recorded at specific times during the procedure. The c-clamp group showed greater hemodynamic stability when compared to the cross-clamp group. It was manifested by 1) significantly higher mean arterial blood pressure [63 (range, 8) vs 47 (range, 10) mmHg, p < 0.05], 2) faster capillary refill [4 (range, 2) vs 6 (range, 2) seconds, p < 0.05], 3) higher urinary output [0.18 (range, 0.02) vs 0.14 (range, 0.02) ml, p < 0.05], and 4) lower bowel wet-to-dry ratio [4.168 (range, 0.258) vs 4.731 (range, 0.271), p<0.05]. We conclude partial IVC clamping improves hemodynamic stability during the construction of the rat portacaval shunt model.
Cite this paper: nullM. Asgeri, N. Waghray, K. Mullen, N. Nader, H. Brunengraber and J. Sanabria, "Partial IVC Clamping Improves Intraoperative Hemodynamic Parameters in the Rodent Portacaval Anastomosis Model," Surgical Science, Vol. 2 No. 2, 2011, pp. 102-108. doi: 10.4236/ss.2011.22021.
References

[1]   E. J. Smanik, K. D. Mullen, W. G. Giroski and A. J. McCullough, “The Influence of Protacaval Anastomosis on Gonadal and Anterior Pirtuitary Hormones in a Rat Model Standardized for Gender, Food Intake, and Time after Surgery,” Steroids, Vol. 56, 1991, pp. 237-247. doi:10.1016/0039-128X(91)90040-3

[2]   S. H. Lee and B. Fisher, “Portacaval Shunt in the Rat,” Surgery, Vol. 50, No. 4, 1961, pp. 668-672.

[3]   R. Herz, V. Savtter, F. Robert and Bircher J, “The Eck fistula Rat: Definition of an Experimental Model,” European Journal of Clinical Investigation, Vol. 2, No. 6, 1972, pp. 390-397. doi:10.1111/j.1365-2362.1972.tb00667.x

[4]   S. Lee, J. G. Chandler, C. E. Broelsch, Y. M. Flamant and M. J. Orloff, “Portal-Systemic Ansastomosis in Rat,” Journal of Surgical Research, Vol. 17, No. 1, 1974, pp. 53-73. doi:10.1016/0022-4804(74)90168-1

[5]   R. B. Rutherford, “Basic Vascular Surgical Techniques,” WB Saunders, Vol. 1, No. 5, 2000, pp. 484-486.

[6]   E. M. Brznock, “Surgical Manipulations of Potosystemic Shunts in Dogs,” Journal of the American Veterinary Medical Association, Vol. 174, No. 8, 1979, pp.819-826.

[7]   K. Weinbren, S. L. Washington and C. Y. Smith, “The Response of the Rat Liver to Alterations in Total Portal Blood Flow,” British Journal of Experimental Pathology, Vol. 56, No. 2, 1975, pp. 148-156.

[8]   P. Sharma, “Improved Survival Rate after Portacaval Shunt in the Rat Using a Modified Microsurgial Technique,” European Surgical Research, Vol. 27, No. 2, 1995, pp. 134-136. doi:10.1159/000129384

[9]   M. B. Khosravi, H. Jalaeian, M. Lahsaee, S. Ghaffaripour, H. Salahi and A. Bahador, “The Effect of Clamping of Inferior Vena Cava and Portal Vein on Urine Output during Liver Transplantation,” Transplantation Proceedings, Vol. 39, No. 4, 2007, pp. 1197-8. doi:10.1016/j.transproceed.2007.02.057

[10]   W. Zhou, A. Li, Z. Pan, S. Fu, Y. Yang, L. Tang, Z. Hou and M. Wu, “Selectiv E Hepatic Vascular Exclusion and Pringle Maneuver: A Comparative Study in Liver Resection,” European Journal of Surgical Oncology, Vol. 34, No. 1, 2008, pp. 49-54. doi:10.1016/j.ejso.2007.07.001

[11]   J. M. Funovics, M. G. Cummings, L. Shuman, J. H. James and J. E. Fischer, “An Improved Nonsuture Method for Portacaval Anastomosis in the Rat,” Surgery, Vol. 77, No. 5, 1975, pp. 661-664.

[12]   F. Sánchez-Patán, R. Blanco, M. A. Aller, R. Anchuelo, F. S. Román and J. Arias, “End-To-Side Portacaval Shunt: a Simplified Technique,” Journal Of Investigative Surgery, Vol. 20, No. 2, 2007, pp. 135-138.

[13]   S. Welch, “A Technique for Portacaval Anastomosis (Eck Fistula),” Surgical Gynecology and Obstetrics, Vol. 85, 1947, p. 492.

[14]   G. Jacob, S. Howe, Hobbs and K. A. Caval, “Clamp for Portacaval Shunt in the Rat,” Laboratory Animals, Vol. 18, No. 1, 1984, pp. 20-21. doi:10.1258/002367784780865009

[15]   D. L. Coy, A. Srivastava, J. Gottstein, R. F. Butterworth and A. T. Blei, “Postoperative Course after Portacaval Anastomosis in Rats is Determined by Protacaval Pressure Gradient,” American Journal of Physiology, Vol. 261, No. 6, 1991, pp. 1072-1078.

[16]   R. Radakrishnan, K. Shah, H. Xue, S. Moore-Olufemi and F. Moore, “Measurement of Intestinal Edema Using an Impedance Analyzer Circuit,” Journal of Surgical Research, Vol. 138, No. 1, 2007, pp. 106-110. doi:10.1016/j.jss.2006.06.009

[17]   P. H. Brand, K. B. Coyne, K. A. Kostrzewski, P. Shier and P. J. Metting, “Pressure Dieresis and Autonomic Function in Conscious Dogs,” American Journal of Physiology, Vol. 261, No. 4, 1991, pp. 802-810.

[18]   J. E. Steele, P. H. Brand, P. J. Metting and S. L. Britton, “Dynamic, Short-Term Coupling between Changes in Arterial Pressure and Urine Flow,” American Journal of Physiology, Vol. 265, No. 5, 1993, pp. 717-722.

[19]   H. D. Lauson, S. E. Bradley, A. Cournand and V. V. Andrews, “The Renal Circulation in Shock,” Journal of Clinical Investigation, Vol. 23, No. 3, 1944, pp. 381-402. doi:10.1172/JCI101506

[20]   M. A. Hayes, “The Influence of Shock without Clinical Renal Failure on Renal Function,” Annals of Surgery, Vol. 146, No. 4, 1957, pp. 523-7. doi:10.1097/00000658-195710000-00001

[21]   E. Eleftheriadis, K. Kotzampassi, K. Papanotas, N. Heliadis and K. Sarris, Gut Ischemia, “Oxidative Stress, and Bacterial Translocation in Elevated Abdominal Pressure in Rats,” Vol. 20, No. 1, 1996, pp. 11-6.

[22]   J. Jiang, S. Bahrami, G, Leichtfried, H. Redl, W. Ohlinger and G. Schlag, “Kinetics of Endotoxin and Tumor Necrosis Factor Appearance in Portal and Systemic Circulation after Hemorrhagic Shock in Rats,” Annals of Surgery, Vol. 221, No. 1, 1995, pp. 100-106. doi:10.1097/00000658-199501000-00012

[23]   J. R. Braz, P. Nascimento, O. Paiva Filho, L. G. Braz, L. A. Vane, P. T. Vianna, G. R. Rodrigues, “The Early Systemic and Gastrointestinal Oxygenation Effects of Hemorrhagic Shock Resuscitation with Hypertonic Saline and Hypertonic Saline 6% Dextran-70: a Comparative Study in Dogs,” Anesthesia & Analgesia, Vol. 99, No. 2, 2004, pp. 536-546. doi:10.1213/01.ANE.0000122639.55433.06

[24]   G. D. Bottoms, “Plasma concentrations of Endotoxin Following Jugular or Portal Vein Ligation,” Circulation Shock, Vol. 33, 1991, pp. 1-6.

[25]   M. Nakasuji and M. Bookallil, “Pathophysiological Mechanisms of Postrevascularization Hyperkalemia in Orthotopic Liver Transplantation,” Anesthesia & Analgesia, Vol. 91, No. 6, 2000, pp. 1351-1355. doi:10.1097/00000539-200012000-00008

[26]   I. Hilmi and R. Planinsic, “Con: Venovenous Bypass Should Not Be Used In Orthotopic Liver Transplantation,” Journal of Cardiothoracic and Vascular Anesthesia, Vol. 20, No. 5, 2006, pp. 744-747. doi:10.1053/j.jvca.2006.06.004

[27]   X. P. Chu, X. M. Zhu, W. L. Wei, G. H. Li, R. P. Simon, J. F. MacDonald and Z. G. Xiong, “Acidosis Decreases Low Ca(2+)-Induced Neuronal Excitation by Inhibiting the Activity of Calciumsensing Cation Channels in Cultured Mouse Hippocampal Neurons,” Journal of Physiology, Vol. 550 , No. 2, 2003, pp. 385-399. doi:10.1113/jphysiol.2003.043091v T. R. Sairanen, P. J. Lindsberg, M. Brenner and A. L. Sirén, “Global Forebrain Ischemia Results in Differential Cellular Expression of Interleukin-1beta (IL-1beta) a

[28]   H. Uno, T. Matsuyama, H. Akita, H. Nishimura and M. Sugita, “Induction of Tumor Necrosis Factor-Alpha in the Mouse Hippocampus Following Transient Forebrain Ischemia,” Journal of Cerebral Blood Flow & Metabolism, Vol. 17, No. 5, 1997, pp. 491-499. doi:10.1097/00004647-199705000-00002

[29]   V. L. Rao, K. K. Bowen, A. M. Rao and R. J. Dempsey, “Up-Regulation of the Peripheral-Type Benzodiazepine Receptor Expression and [(3)H] PK11195 Binding in Gerbil Hippocampus after Transient Forebrain Ischemia,” Journal of Neuroscience Research, Vol. 64, No. 5, 2001, pp. 493-500.doi:10.1002/jnr.1101

[30]   J. Benavides, A. Dubois, B. Gotti, F. Bourdiol and B. Scatton, “Cellular Distribution of Omega 3 (Peripheral Type Benzodiazepine) Binding Sites in the Normal and Ischaemic Rat Brain: an Autoradiographic Study with the Photoaffinity Ligand [3H] PK 14105,” Neuroscience Letters, Vol. 114, No. 1, 1990, pp. 32-38. doi:10.1016/0304-3940(90)90424-8

[31]   F. Bourdiol, S. Toulmond, A. Serrano, J. Benavides, B. Scatton, “Increase in Omega 3 (Peripheral Type Benzodiazepine) Binding Sites in the Rat Cortex and Striatum after Local Injection of Interleukin-1, Tumour Necrosis Factor-Alpha and Lipopolysaccharide,” Brain Research, Vol. 543, No. 2, 1991, pp. 194-200. doi:10.1016/0006-8993(91)90028-T

[32]   V. L. Raghavendra Rao, A. Dogan, K. K. Bowen and R. J. Dempsey, “Traumatic Brain Injury Leads to Increased Expression of Peripheral-Type Benzodiazepine Receptors, Neuronal Death, and Activation of Astrocytes and Microglia in Rat Thalamus,” Experimental Neurology, Vol. 161, No. 1, 2000, pp. 102-114. doi:10.1006/exnr.1999.7269

[33]   V. L. Rao, R. Audet, G. Therrien and R. F. Butterworth, “Tissue-Specific Alterations of Binding Sites for Peripheral-Type Benzodiazepine Receptor Ligand [3H] PK11195 in Rats Following Portacaval Anastomosis,” Digestive Diseases and Sciences, Vol. 39, No. 5, 1994, pp. 1055-1063. doi:10.1007/BF02087558

[34]   F. Bourdiol, S. Toulmond, A. Serrano, J. Benavides and B. Scatton, “Increase in Omega 3(Peripheral Type Benzodiazepine) Binding Sites in the Rat Cortex and Striatum after Local Injection of Interleukin-1, Tumour Necrosis Factor-Alpha and Lipopolysaccharide,” Brain Research, Vol. 543, No. 2, 1991, pp. 194-200. doi:10.1016/0006-8993(91)90028-T

 
 
Top