JEMAA  Vol.6 No.5 , April 2014
Electrodynamics of Inhomogeneous (Laminated, Angular) Structures
Abstract

The consistent physic-mathematical model of propagation of an electromagnetic wave in a heterogeneous medium is constructed using the generalized wave equation and the Dirichlet theorem. Twelve conditions at the interfaces of adjacent media are obtained and justified without using a surface charge and surface current in explicit form. The conditions are fulfilled automatically in each section of counting schemes for calculations. A consistent physicomathematical model of interaction of nonstationary electric and thermal fields in a layered medium with allowance or mass transfer is constructed. The model is based on the methods of thermodynamics and on the equations of an electromagnetic field and is formulated without explicit separation of the charge carriers and the charge of an electric double layer. The influence of a slowly moving medium on the electromagnetic wave propagation is considered. The calculation results show the absence of the influence of the medium’s motion on the phase shift of waves, which is consistent with experimental data.


Cite this paper
Grinchik, N. (2014) Electrodynamics of Inhomogeneous (Laminated, Angular) Structures. Journal of Electromagnetic Analysis and Applications, 6, 57-105. doi: 10.4236/jemaa.2014.65009.
References

[1]   Monzon, J.J., Yonte, T. and Sanchez-Soto, L. (2003) Characterizing the Reflectance of Periodic Lasered Media. Optics Communications, 218, 43-47.

[2]   Eremin, Y. and Wriedt, T. (2003) Large Dielectric Non-Spherical Particle in an Evanescent Wave Field near a Plane Surface. Optics Communications, 214, 39-45.

[3]   Hu, W. and Guo, H. (2002) Ultrashort Pulsed Bessel Beams and Spatially Induced Group-Velocity Dispersio. Journal of the Optical Society of America A, 19, 49-52.

[4]   Danae, D., Bienstman, P., Bockstaele, R. and Baets, R. (2002) Rigorous Electromagnetic Analysis of Dipole Emission in Periodically Corrugated Layers: The Grating-Assisted Resonant-Cavity Lightemitting Diode. Journal of the Optical Society of America A, 19, 871-880. http://dx.doi.org/10.1364/JOSAA.19.000871

[5]   Larruquert, J.I. (2001) Reflectance Enhancement with Sub-Quarterwave Multilayers of Highly Absorbing Materials. Journal of the Optical Society of America A, 18, 1406-1414.

[6]   Kolundzija, B.M. (1999) Electromagnetic Modeling of Composite Metallic and Dielectric Structures. IEEE Transactions on Microwave Theory and Techniques, 47, 1021-1032.

[7]   Ehlers, R.A. and Metaxas, A.C.R. (2003) 3-D FE Discontinuous Sheet for Microwave Heating. IEEE Transactions on Microwave Theory and Techniques, 51, 718-726. http://dx.doi.org/10.1109/TMTT.2003.808731

[8]   B′arta, O., Piˇstora, J., Vlˇcek, J., Stanˇek, F. and Kreml, T. (2001) Magneto-Optics in Bi-Gyrotropic Garnet Waveguide. Opto-Electronics Review, 9, 320-325.

[9]   Broe, J. and Keller, O. (2002) Quantum-Well Enhancement of the Goos-H¨anchen Shift for p-Polarized Beams in a Two-Prism Configuration. Journal of the Optical Society of America A, 19, 1212-1222.
http://dx.doi.org/10.1364/JOSAA.19.001212

[10]   Keller, O. (1995) Optical Response of a Quantum-Well Sheet: Internal Electrodynamics. Journal of the Optical Society of America B, 12, 997-1005. http://dx.doi.org/10.1364/JOSAB.12.000997

[11]   Keller, O. (1995) Sheet-Model Description of the Linear Optical Response of Quantum Wells. Journal of the Optical Society of America B, 12, 987-997.

[12]   Keller, O. (1997) V: Local Fields in Linear and Nonlinear Optics of Mesoscopic System. Progress in Optics, 37, 257-343. http://dx.doi.org/10.1016/S0079-6638(08)70340-8

[13]   Grinberg, G.A. and Fok, V.A. (1948) On the Theory of Coastal Refraction of Electromagnetic Waves. In: Vvedenskii, B.A., Ed., Investigations on Propagation of Radio Waves, AN SSSR, 69-111.

[14]   Grinchik, N.N. and Dostanko, A.P. (2005) Influence of Thermal and Diffusional Processes on the Propagation of Electromagnetic Waves in Layered Materials. ITMO, Minsk.

[15]   Born, M. (1970) Principles of Optics. Mir, Moscow.

[16]   Kudryavtsev, L. (1970) Mathematical Analysis. Mir, Moscow.

[17]   Frumkin, A. (1987) Electrode Processes. Nauka, Moscow.

[18]   Tikhonov, A. N. and Samarskii, A. A. (1977) Equations of Mathematical Physics. Nauka, Moscow.

[19]   Kryachko, A.F., et al. (2009) Theory of Scattering of Electromagnetic Waves in the Angular Structure. Nauka, Moscow.

[20]   Leontovich, M. (1948) On the Approximate Boundary Conditions for the Electromagnetic Field on the Surface of Well Conducting Bodies. In: Vvedenskii, B.A., Ed., Investigations on Propagation of Radio Waves, AN SSSR, Moscow, 5-10.

[21]   Grinchik, N.N., Dostanko, A.P., Gishkelyuk, I.A. and Grinchik, Y.N. (2009) Electrodynamics of Layered Media with Boundary Conditions Corresponding to the Total-Current Continuum. Journal of Engineering Physics and Thermophysics, 82, 810-819. http://dx.doi.org/10.1007/s10891-009-0246-1

[22]   Shul’man, Z.P. and Kordonskii, V. I. (1982) Magnetorheological Effect. Nauka i Tekhnika, Minsk.

[23]   Khomich, M. (2006) Magnetic-Abrasive Machining of the Manufactured Articles. BNTU, Minsk.

[24]   Levin, M.N., et al. (2003) Activation of the Surface of Semiconductors by the Effect of a Pulsed Magnetic Field. Zhurnal Tekhnicheskoi Fiziki, 73, 85-87.

[25]   Orlov, A.M., et al. (2001) Magnetic-Stimulated Alteration of the Mobility of Dislocations in the Plastically Deformed Silicon of n-Type. Fizika Tverdogo Tela, 43, 1207-1210.

[26]   Makara, V.A., et al. (2001) On the Influence of a Constant Magnetic Field on the Electroplastic Effect in Silicon Crystals. Fizika Tverdogo Tela, 3, 462-465.

[27]   Rakomsin, A. P. (2000) Strengthening and Restoration of Items in an Electromagnetic Field. Paradoks, Minsk.

[28]   Golovin, Yu.I., et al. (2007) Influence of Weak Magnetic Fields on the Dynamics of Changes in the Microhardness of Silicon Initiated by Low-Intensity Beta-Irradiation. Fizika Tverdogo Tela, 49, 822-823.

[29]   Makara, V.A., et al. (2008) Magnetic Field-Induced Changes in the Impurity Composition and Microhardness of the Near-Surface Layers of Silicon Crystals. Fiz. Tekh. Poluprovadn, 42, 1061-1064.

[30]   Orlov, A.M., et al. (2003) Dynamics of the Surface Dislocation Ensembles in Silicon in the Presence of Mechanical and Magnetic Perturbation. Fizika Tverdogo Tela, 45, 613-617.

[31]   Akulov, N.S. (1961) Dislocations and Plasticity. Izd. ANBSSR, Minsk.

[32]   Akulov, N.S. (1939) Ferromagnetism. ONTI, Leningrad.

[33]   Bazarov, I.P. (1991) Thermodynamics: Textbook for Higher Educational Establishments. Vysshaya Shkola, Moscow.

[34]   Grinchik, N.N., et al. (2010) Electrodynamic Processes in a Surface Layer in Magnetoabrasive Polishing. Journal of Engeneering Physics and Thermodynamics, 83, 638-649.

[35]   Einstein, A. (1966) Elementary Theory of Brownian Motion. Collected Papers 3.

[36]   Golant, V.E., et al. (1977) Fundamental Principles of Plasma Physics. Nauka, Moscow.

[37]   Kharkats, Y. (1988) Dependence of the Limiting Diffusion-Migration Current on the Degree of Electrolyte Dissociation. Elektrokhimiya, 24, 539-541.

[38]   Sokirko, A. and Kharkats, Yu. (1989) The Limiting Diffusion and Migration Currents as Functions of the Rate Constants of Electrolyte Dissociation and Recombination. Elektrokhimiya, 25, 331-335.

[39]   Gibbs, D.V. (1982) Thermodynamics. Statistical Mechanics, Moscow.

[40]   Antropov, L.N. (1984) Theoretical Electrochemistry. High School, Moscow.

[41]   Hertz, H.G. (1980) Electrochemistry. Springer-Verlag, New York, 231.

[42]   Levich, V., et al. (1959) Physicochemical Hydrodynamics. Fizmatgiz, Moscow, 699 p.

[43]   Neumann, J. (1977) Electrochemical Systems. MIR, Moscow, 463 p.

[44]   Skorcheletti, V. (1969) Theoretical Electrochemistry. Himya, Leningrad.

[45]   Landau, L.D. and Lifshits, E.M. (1982) Theoretical Physics. 8. Electrodynamics of Continuous Media, Physmathlit, Moscow, 656 p.

[46]   Grinchik, N.N. and Tsurko, V.A. (1999) On the Problem of Modeling Nonstationary Electric Fields in Layered Media. Tr. Inst. Mat. Nats. Akad. Nauk Belarusi, 3/557, 11 p.

[47]   Shvab, A.I. (1994) Integral Operators rot-1, div-1, grad-1. Part 1. Elektrichestvo, 4, 59-67.

[48]   Shvab, A.I. and Imo, F. (1994) New Integral Operators rot-1, div-1, grad-1. Part 2. Elektrichestvo, 5, 55-59.

[49]   Grinchik, N.N., et al. (1997) Simulation of Electrical Phenomena in Distributed Systems. Vesti Nats. Akad. Nauk Belarusi, Ser. Fiz. Mat. Navuk, 2, 66-70.

[50]   Tamm, I.E. (1976) Principles of the Theory of Electricity. Physmathlit, Moscow.

[51]   Stratton, J.A. (1948) The Theory of Electromagnetism. Gostechizdat, Leningrad, 539 p.

[52]   Grinchik, N.N. (1993) Diffusional-Electrical Phenomena in Electrolytes. Journal of Engineering Physics and Thermophysics, 64, 497-504. http://dx.doi.org/10.1007/BF00862643

[53]   Grinchik, N.N. (1993) Electrodiffusion Phenomena in Electrolytes. Inzhenerno-Fizicheskii Zhurnal, 64, 610-618.

[54]   Grinchik, N.N., et al. (2000) Interaction of Thermal and Electric Phenomena in Polarized Media. Mat. Modelir, 12, 67-76.

[55]   Grinchik, N.N. (2008) Modeling of Electrical and Thermophysical Processes in Layered Medium. Belorusskaya Nauka Press, Minsk.

[56]   Grinchik, N.N., Muchynski, A.N., Khmyl, A.A. and Tsurkob, V.A. (1998) Finite-Differences Method for Modeling Electric Diffusion Phenomena. Matematicheskoe Modelirovanie, 10, 55-66.

[57]   Antropov, L.N. (1989) Theoretical Electrochemistry. Highshool, Moscow.

[58]   Kostin, N.A. and Labyak, O.V. (1995) Mathematical Modeling of Pulsed Deposition of Alloys. Elektrokhimiya, 31, 510-516.

[59]   Dikusar, A. I. et al. (1989) Thermokinetic Phenomena in High-Frequency Processes. Kishinev.

[60]   Bark, F., Kharkats, Yu. and Vedin, R. (1998) Joule Heating in Electrochemical Cells with Natural Convection and Stratification of the Electrolyte. Elektrokhimiya, 34, 434-444.

[61]   Grinchik, N.N. and Tsurko, V.A. (2002) Problem of Modeling of the Interaction of Nonstationary Electric, Thermal and Diffusion Field in Layered Media. Journal of Engeneering Physics and Thermodynamics, 75, 693-699.

[62]   Kolesnikov, P. (2001) Theory and Calculation of Waveguides, Light Guides and Integral-Optoelectronics Elements. Electrodynamics and Theory of Waveguides. ITMO NAN Belarusi, Minsk.

[63]   Skanavi, T. (1949) Dielectric Physics (Region of Weak Fields). Gostekhizdat, Moscow.

[64]   Perre, P. and Turner, I.W. (1996) A Complete Coupled Model of the Combined Microwave and Convective Drying of Softwood in an Oversized Waveguid. Proceedings of the 10th International Drying Symposium (IDS’96), Krakow, 1996, 183-194.

[65]   J. Jaeger (1977) Methods of Measurement in Electrochemistry. Vol. 2, Mir., Moscow, 475 p.

[66]   Barash, Y. and Ginzburg, V. L. (1976) On the Expressions of Energy Density and the Release of Heat in Electrodynamics of a Dispersing and Absorbing Medium. Uspekhi Fizicheskikh Nauk, 118, 523.
http://dx.doi.org/10.3367/UFNr.0118.197603f.0523

[67]   Vakman, D.E. and Vanshtein, L.A. (1977) Amplitude, Phase, Frequency Are the Principal Notions in the Theory of Ossillations. Uspekhi Fizicheskikh Nauk, 123, 657. http://dx.doi.org/10.3367/UFNr.0123.197712f.0657

[68]   Choo, B.-T. (1962) Plasma in a Magnetic Field and Direct Thermal-to-Electric Energy Conversion. Gosatomizdat. Moscow, 62-83.

[69]   Antonets, I.V., Kotov, L.N., Shavrov, V.G. and Shcheglov, V.I. (2009) Energy Characteristics of Propagation of a Wave through the Boundaries of Media with Complex Parameters. Radiotekhnika i Elektronika, 54, 1171-1183.

[70]   Tamm, I.E. (2003) Foundations of Electricity Theory. Nauka, Moscow.

[71]   Golant, V.E., Zhilinski, A.P. and Sakharov, I.E. (1977) Fundamentals of Plasma Physics. Moscow, 383.

[72]   Blokhintsev, D.I. (1945) Vortex Sound. Journal of Technical Physics, 15, 72-81.

[73]   Blokhintsev, D.I. (1981) Acoustics of an Inhomogeneous Moving Medium. Nauka, Moscow, 84-87.

[74]   Godin, O.A. (1989) Acoustics of the Ocean Medium. Nauka, Moscow, 217-220.

[75]   Razin, A.V. (1990) On the Reflection of a Spherical Acoustic Delta Pulse from the Interface Gas-Solid. Akustich. Zh., 36, 337-339.

[76]   Miniovich, I.A., Pernik, A.D. and Petrovski, V.S. (1971) Hydrodynamic Sources of Sound. Shipbuilding, Leningrad, 26-28.

[77]   Grinchik, N.N., Akulich, P.V., Kuts, P.S., et al. (1995) Aeroacoustics of Moving Media (No. 3). Belarus Academy of Sciences Vesti, Minsk, 91-95.

[78]   Grinchik, N.N., Akulich, P.V., Kuts, P.S., et al. (1995) Modeling of Unsteady Wave Processes in Moving Media. Journal of Engineering Physics and Thermophysics, 68, 812-817.

[79]   Laue, M. (1950) Zs. Phys., Bd., 128, 387.

[80]   Einstein, A. (1965) Collected Works (Vol. 1). Nauka, Moscow, 12.

[81]   Sommerfeld, A. (1987) Ann. Phys., Bd., 44, 177.

[82]   Grinchik, N.N.Yu. (2012) Grinchik Fundamental Problems of the Electrodynamics of Heterogeneons Media. Physics Research International, 2012, Article ID: 185647. http://dx.doi.org/10.1155/2012/185647

[83]   Grinchik, N.N., et al. (2011) Electromagnetic Wave Propagation in Complex Matter. Intech, Rijeka.

 
 
Top