IJG  Vol.5 No.5 , April 2014
Transport-Limited Denudation Regime Inferred from Sand Petrography and Chemical Composition: Cenozoic Sediments from the Guadiana Basin (SW Spain)
Abstract: The Guadiana Basin is an E-W intraplate Cenozoic basin located in SW of the Iberian Peninsula, covering an area close to 6000 km2. NE-SW Alpine faults divide the basin into two subbasins: the Vegas Altas (VA) to the East, and the Vegas Bajas (VB) to the West. Sedimentary record consists of <200 m thick of sediments, arranged in two main depositional sequences, DS1 and DS2. Petrographic analysis of sediment sandy-fraction combined with geochemical analysis of <2 mm fraction permit to infer provenance and factors controlling sediment composition. Petrographic analysis of sandy-fraction reveals provenance from basin margins lithologies. In VA subbasin, quartzolithic petrofacies characterized eastern subbasin infill related to the erosion of Neoproterozoic and Palaeozoic metasediments. To the West quartzofeldspathic petrofacies predominates, associated with the erosion of coarse-grained plutonites and short distance transport of their products. Intermediate petrofacies characterizes clastic deposits from the VB. Chemical analysis of clastic deposits corroborates a main felsic origin of sediments with a composition that fits well with the upper crust compositional norm and with the Neoproterozoic Iberian Average Shale (NIBAS). In addition, minor contributions from mafic sources can be identified in DS1 from VB, manifested by anomalies in the content of Co, Ni, Cr, V and Sc. Different stages of weathering (from intermediate to intense) can be deduced by the analysis of both, sandy-fraction petrography and bulk sediment geochemistry. This fact is related to the great hiatus at the base of the Cenozoicbasin infill. Transport-limited denudation regimes can be inferred by the presence of high and intermediate weathered and texturalyinmature sediments. In addition, trace element ratios suggest local enrichment in dense minerals, attributable to recycling processes from metasediments. Finally, the sedimentary record of the Guadiana Basin is constituted by immature sediments formed by limited transsport processes of very variable weathered products from recycled metasedimentary and first-order sediments from granitoids.
Cite this paper: Arribas, J. , Tsige, M. , Garzón, G. and Tejero, R. (2014) Transport-Limited Denudation Regime Inferred from Sand Petrography and Chemical Composition: Cenozoic Sediments from the Guadiana Basin (SW Spain). International Journal of Geosciences, 5, 478-496. doi: 10.4236/ijg.2014.55046.

[1]   Villalobos, M., Jorquera, A. and Apalategui, O. (1988) Mapa Geologico de Espana 1:50.000, hoja no 802 (La Albuera). IGME, Madrid.

[2]   Moreno, F., Matas, J. and Leyva, F. (2004) Mapa Geologico de Espana 1:50.000, hoja no 732 (Valdecaballeros). IGME, Madrid.

[3]   Garzon, G., Pellicer, M.J., Tsige, M., Tejero, R., Brum, A., Cabral, J. and Babin, R. (2012) El Cenozoico de la depresion del Guadiana en Badajoz. Nueva sintesis y propuesta de correlacion. Geotemas, 13, 309-312.

[4]   Tsige, M., Garzon,G., Tejero, R., Pellicer, M.J. and Babin, R. (2013) La composicion mineralogica de los sedimentos terciarios de la Cuenca del Guadiana. Geogaceta, 54, 78-82.

[5]   Dickinson, W.R. (1985) Provenance Relations from Detrital Modes of Sandstones. In: Zuffa, G.G., Ed., Provenance of Arenites, NATO Advanced Science Institutes Series, C-148, 333-362.

[6]   Zuffa, G.G. (1985) Optical Analysis of Arenites: Influence of Methodology on Compositional Results. In: Zuffa, G.G., Ed., Provenance of Arenites, NATO Advanced Science Institutes Series, C-148, 165-190.

[7]   Zuffa, G.G. (1987) Unravelling Hinterland and Offshore Palaeogeography from Deep-Water Arenites. In: Legget, J.K. and Zuffa, G.G., Eds., Marine Clastic Sedimentology, Graham & Trotman, London, 39-61.

[8]   Basu, A. (1985) Influence of Climate and Relief on Compositions of Sands Released at Source Areas. In: Zuffa, G.G., Ed., Provenance of Arenites, NATO Advanced Science Institutes Series, C-148, 1-18.

[9]   Arribas, J., Alonso-Millan, A., Mas, R., Tortosa, A., Rodas, M., Barrenechea, J.F., Alonso-Azcarate, J. and Artigas, R. (2003) Sandstone Petrography of Continental Depositional Sequences of an Intraplate Rift Basin: Western Cameros Basin (North Spain). Journal of Sedimentary Research, 73, 309-327.

[10]   Arribas, J., Ochoa, M., Mas, R., Arribas, MaE. and Gonzalez-Acebron, L. (2007) Sandstone Petrofacies in the Northwestern Sector of the Iberian Basin. Journal of Iberian Geology, 33, 191-206.

[11]   Nesbitt, H.W. and Young, G.W. (1982) Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299, 715-717.

[12]   McLennan, S.M., Hemming, S., McDaniel, D.K. and Hanson, G.N. (1993) Geochemical Approaches to Sedimentation, Provenance and Tectonics. In: Johnsson, M.J. and Basu, A., Eds., Processes Controlling the Composition of Clastic Sediments, Geological Society of America, Special Paper 284, 21-40.

[13]   Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X. and Qi, L. (2002) Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. Journal of Sedimentary Research, 72, 393-407.

[14]   Cloetingh, S., Burov, E., Beekman, F., Andeweg, B.P., Andriessen, A.M., Garcia-Castellanos, D., de Vicente, G. and Vegas, R. (2002) Lithospheric Folding in Iberia. Tectonics, 21, 1-26.

[15]   Tejero, R., Garzon Heydt, G., Babin Vich, R. and Fernandez Garcia, P. (2010) Long-Term Evolving “Tectonic” Landscapes within Intra-Plate Domains: The Iberian Peninsula. In: Veress, B. and Szigethy, J., Eds., Horizons in Earth Science Research (Vol. 2), Nova Science Publishers, Inc., USA, 103-123.

[16]   Tejero, R., Garzon, G., Fernandez, P., Tsige, M. and Babin, R. (2011) El control de la deformacion cortical en la evolucion de los relieves “tectonicos” del centro y suroeste del Macizo Iberico. Revista de la Sociedad Geologica de Espana, 24, 69-84.

[17]   Rodriguez Alonso, M.D., Diez Belda, M.A., Perejon, A., Pieren, A., Linan, E., Lopez Diaz, F., Moreno, F., Gamez Vintaned, J.A., Gonzalez Lodeiro, F., Martinez Poyatos, D. and Vegas, R. (2004) Dominio del Complejo Esquisto-Grauvaquico. Estratigrafia. La secuencia litoestratigrafica del Neoproterozoico—Cambrico Inferior. In: Vera, J.A., Ed., Geologia de Espana, Sociedad Geologica de Espana—Instituto Geologico y Minero de Espana, Madrid, 78-81.

[18]   Apalategui, O., Jorquera, A. and Villalobos, M. (1988) Mapa Geologico de Espana 1:50.000, hoja no 801 (Olivenza). IGME, Madrid.

[19]   Azor, A., Exposito, I., Gonzalez Lodeiro, F., Simancas, J.F. and Martinez Poyatos, D. (2004) Zona de Ossa-Morena. Estratigrafia. Formaciones precambricas. In: Vera, J.A., Ed., Geologia de Espana, Sociedad Geologica de Espana— Instituto Geologico y Minero de Espana, Madrid, 166.

[20]   Villalobos, M. and Jorquera, A. (1998) El Terciario continental y Cuaternario del sector meridional de la Cuenca del Guadiana. Publicaciones del Museo de Geologia de Extremadura, 5, 33-44.

[21]   Tejero Lopez, R., Gomez Ortiz, D., Garzon Heydt, G., Tsige, M., Fernandez Garcia, P., Ortega Becerril, J.A., Babin Vich, R., Pellicer, M.J., Cabeza Dancausa, M. and Jimenez Diaz, A. (2012) La estructura de las Vegas Bajas del Guadiana. Geo-Temas, 03,127 O. CD.

[22]   Chayes, F. (1952) Notes on the Staining of Potash Feldspar with Sodium Cobaltonitrite in Thinsection. American Mineralogist, 37, 337-340.

[23]   Di Giulio, A. and Valloni, R. (1992) Sabbie e areniti: Analisi ottica e classificazione. Acta Naturale Ateneo Parmese, 28, 1-101

[24]   Zuffa, G.G. (1980) Hybrid Arenites: Their Composition and Classification. Journal of Sedimentary Petrology, 50, 21-29.

[25]   Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. (1984) The North American Shale Composite: Its Composition, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482.

[26]   Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford.

[27]   McLennan, S.M., Taylor, S.R. and Eriksson, K.A. (1983) Geochemistry of Archean Shales from the Pilbara Supergroup, Western Australia. Geochimica et Cosmochimica Acta, 47, 1211-1222.

[28]   Feng, R. and Kerrich, R. (1990) Geochemistry of Fine-Grained Clastic Sediments in the Archean Abitibi Greenstone Belt, Canada: Implications for Provenance and Tectonic Setting. Geochimica et Cosmochimica Acta, 54, 1061-1081.

[29]   Floyd, P.A. and Leveridge, B.E. (1987) Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 144, 531-542.

[30]   Ugidos, J.M., Sanchez-Santos, J.M., Barba, P. and Valladares, M.I. (2010) Upper Neoproterozoic Series in the Central Iberian, Cantabrian and West Asturian Leonese Zones (Spain): Geochemical Data and Statistical Results as Evidence for a Shared Homogenised Source Area. Precambrian Research, 178, 51-58.

[31]   Maynard, J.B., Valloni, R. and Yu, H.S. (1982) Composition of Modern Deepsea Sands from Arc-Related Basins. In: Leggett, J.K., Ed., Sedimentation and Tectonics on Modern and Ancient Active Plate Margins (Vol. 10), Geological Society of London, Special Publication, 551-56l.

[32]   Nesbitt, H.W., Fedo, C.M. and Young, G.M. (1997) Quartz and Feldspar Stability, Steady and Non-Steady-State Weathering, and Petrogenesis of Siliciclastic Sands and Muds. Journal of Geology, 105, 173-191.

[33]   Johnsson, M.J. (1993) The System Controlling the Composition of Clastic Sediments. In: Johnsson, M.J. and Basu, A., Eds., Processes Controlling the Composition of Clastic Sediments, Vol. 284, Geological Society of America, Special Paper, 1-19.

[34]   McLennan, S.M. and Taylor, S.R. (1991) Sedimentary-Rocks and Crustal Evolution: Tectonic Setting and Secular Trends. Journal of Geology, 99, 1-21.

[35]   Bhatia, M.R. and Crook, K.A.W. (1986) Trace Elements Characteristics of Greywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92, 181-193.

[36]   Pettijohn, F.J., Potter, P.E. and Siever, R. (1972) Sand and Sandstone. Springer-Verlag, Berlin.

[37]   Arribas, J., Alonso, A., Pages, J.L. and Gonzalez-Acebron, L. (2010) Holocene Transgression Recorded by Sand Composition in the Mesotidal Galician Coastline (NW Spain). The Holocene, 20, 375-393.

[38]   Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na, and K in Carbonaceous and Ordinary Chondrites. Geochimica et Cosmochimica Acta, 38, 757-775.

[39]   Basu, A., Young, S.W., Suttner, L.J., James, C.W. and Mack, G.H. (1975) Re-Evaluation of the Use of Undulatory Extinction and Polycrystallinity in Detrital Quartz for Provenance Interpretation. Journal of Sedimentary Petrology, 45, 873-882.