JMP  Vol.5 No.7 , April 2014
Quantum-Mechanical Information Content of Multiples Hartree-Fock Solutions. The Multi-Reference Hartree-Fock Configuration Interaction Method
ABSTRACT

The Hartree-Fock equation is non-linear and has, in principle, multiple solutions. The ωth HF extreme and its associated virtual spin-orbitals furnish an orthogonal base Bω of the full configuration interaction space. Although all Bω bases generate the same CI space, the corresponding configurations of each Bω base have distinct quantum-mechanical information contents. In previous works, we have introduced a multi-reference configuration interaction method, based on the multiple extremes of the Hartree-Fock problem. This method was applied to calculate the permanent electrical dipole and quadrupole moments of some small molecules using minimal and double, triple and polarized double-zeta bases. In all cases were possible, using a reduced number of configurations, to obtain dipole and quadrupole moments in close agreement with the experimental values and energies without compromising the energy of the state function. These results show the positive effect of the use of the multi-reference Hartree-Fock bases that allowed a better extraction of quantum mechanical information from the several Bω bases. But to extend these ideas for larger systems and atomic bases, it is necessary to develop criteria to build the multireference Hartree-Fock bases. In this project, we are beginning a study of the non-uniform distribution of quantum-mechanical information content of the Bω bases, searching identify the factors that allowed obtain the good results cited above


Cite this paper
Malbouisson, L. , Sobrinho, A. and Andrade, M. (2014) Quantum-Mechanical Information Content of Multiples Hartree-Fock Solutions. The Multi-Reference Hartree-Fock Configuration Interaction Method. Journal of Modern Physics, 5, 543-548. doi: 10.4236/jmp.2014.57065.
References
[1]   (a) Barbosa, A.G.H. and Nascimento, M.A.C. (2002) Generalized Multistructural Method: Theoretical Foundations and Applications. In: Cooper, D.L., Ed., Valence Bond Theory, Elsevier Science BV, Amsterdam.
(b) Bundgen, P., Grein, F. and Thakkar, A.J.J. (1995) Molecular Structure Quantum Chemistry, 334, 7.
(c) Palmieri, P., Tarroni, R., Mitrushenkov, A.O. and Rettrup, S. (1998) The Journal of Chemical Physics, 109, 7085.
http://dx.doi.org/10.1063/1.477391
(d) Ayala, P.Y. and Schlegel, H.B. (1998) The Journal of Chemical Physics, 108, 7560.
http://dx.doi.org/10.1063/1.476190


[2]   Malbouisson, L.A.C. and Vianna, J.D.M. (1990) Journal de Chimie Physique et de Physico-Chimie Biologique, 87, 2017.

[3]   Malbouisson, L.A.C., Martins, M.G.R. and Makiuchi, N. (2006) International Journal of Quantum Chemistry, 106, 2772. http://dx.doi.org/10.1002/qua.21035

[4]   Sobrinho, A.M.C., Nascimento, M.A.C., de Andrade, M.D. and Malbouisson, L.A.C. (2008) International Journal of Quantum Chemistry, 108, 2595. http://dx.doi.org/10.1002/qua.21672

[5]   Malbouisson, L.A.C., de Andrade, M.D. and Sobrinho, A.M.C. (2012) International Journal of Quantum Chemistry, 112, 3409. http://dx.doi.org/10.1002/qua.24272

[6]   de Andrade, M.D., Nascimento, M.A.C., Mundim, K.C., Sobrinho, A.M.C. and Malbouisson, L.A.C. (2008) International Journal of Quantum Chemistry, 108, 2486. http://dx.doi.org/10.1002/qua.21666

[7]   New Double-Zeta Bases for Li and Be Not Yet Published.

[8]   Multiple HF Solutions for LiH Not Yet Published.

[9]   Chen, M.S., Han, J. and Yu, P.S. (1996) IEEE Transactions on Knowledge and Data Engineering, 8, 866.
http://dx.doi.org/10.1109/69.553155

[10]   Witten, I.H. and Frank, E. (2005) Data Mining: Practical Machine Learning Tools and Techniques. 2th Edition, Morgan Kaufmann, San Francisco.

 
 
Top