JMP  Vol.5 No.7 , April 2014
Macroscopic Quantum System, Highly Correlated Electron State, and High-Temperature Superconductivity in Iron Pnictides
Author(s) M. V. Krasinkova*
ABSTRACT

The qualitative model of the high-temperature superconductivity suggested earlier for cuprates and based on the idea that the superconductivity is associated with delocalized π bonding between ions is not only confirmed by experimental data on iron pnictides but is also improved. It is shown that the FeAs layer state is similar to that of a macroscopic quantum system characterized by a sandwich-type charge distribution in which negatively charged planes are two-dimensional electron crystals of pairs and positively charged planes are formed by positively charged ions. Superconductivity in such a system is accomplished by a two-dimensional Wigner crystal of bosons condensed into one and the same state. The crystal occupies a middle position with respect to charged planes in the sandwich structure, which leads to mutual compensation of all its interactions with all charged planes. The model can prove useful for development of the theory of superconductivity taking into consideration the highly correlated state of all valence electrons that manifests itself in formation of electron crystals with strong Coulomb interactions between them.


Cite this paper
Krasinkova, M. (2014) Macroscopic Quantum System, Highly Correlated Electron State, and High-Temperature Superconductivity in Iron Pnictides. Journal of Modern Physics, 5, 523-533. doi: 10.4236/jmp.2014.57063.
References
[1]   Kamihara, Y., Watanabe, T., Hirano, M. and Hosono, H. (2008) Journal of the American Chemical Society, 130, 3296-3297. http://dx.doi.org/10.1021/ja800073m

[2]   Ren, Z.A., Lu, W., Yang, J., Yi, W., Shen, X.L., Li, Z.C., Che, G.C., Dong, X.L., Sun, L.L., Zhou, F. and Zhao, Z.X. (2008) Chinese Physics Letters, 25, 2215-2216. http://dx.doi.org/10.1088/0256-307X/25/6/080

[3]   Hsu, F.C., Luo, J.Y., Yeh, K.W., Chen, T.K., Huang, T.W., Wu, P.M., Lee, Y.C., Huang, Y.L., Chu, Y.Y., Yan, D.C. and Wu, M.K. (2008) Proceedings of the National Academy of Sciences, 105, 14262-14264.
http://dx.doi.org/10.1073/pnas.0807325105

[4]   Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T. and Takano, Y. (2008) Applied Physics Letters, 93, 152505.
http://dx.doi.org/10.1063/1.3000616

[5]   Shirage, P.M., Kihou, K., Miyazawa, K., Lee, C.H., Kito, H., Eisaki, H., Yanagisawa, T., Tanaka, Y. and Iyo, A. (2009) Physical Review Letters, 103, 257003. http://dx.doi.org/10.1103/PhysRevLett.103.257003

[6]   Liu, R.H., Wu, T., Wu, G., Chen, H., Wang, X.F., Xie, Y.L., Ying, J.J., Yan, Y.J., Li, Q.J., Shi, B.C., Chu, W.S., Wu, Z.Y. and Chen, X.H. (2009) Nature, 459, 64-67. http://dx.doi.org/10.1038/nature07981

[7]   Shirage, P.M., Miyazawa, K., Kihou, K., Kito, H., Yoshida, Y., Tanaka, Y., Eisaki, H. and Iyo, A. (2010) Physical Review Letters, 105, 037004. http://dx.doi.org/10.1103/PhysRevLett.105.037004

[8]   Blachowski, A., Ruebenbauer, K., Zukrowski, J., Przewoznik, J. and Marzec, J. (2010) Journal of Alloys and Compounds, 505, L35-L37. http://dx.doi.org/10.1016/j.jallcom.2010.06.118

[9]   Kitao, S., Kobayashi, Y., Higashitaniguchi, S., Saito, M., Kamihara, Y., Hirano, M., Mitsui, T., Hosono, H. and Seto, M. (2008) Journal of the Physical Society of Japan, 77, 103706. http://dx.doi.org/10.1143/JPSJ.77.103706

[10]   Chen, Y., Lynn, J.W., Li, J., Li, G., Chen, G.F., Luo, J.L., Wang, N.L., Dai, P., de la Gruz, C. and Mook, H.A. (2008) Physical Review B, 78, 064515. http://dx.doi.org/10.1103/PhysRevB.78.064515

[11]   de la Cruz, C., Huang, Q., Lynn, J.W., Li, J., Ratcliff, W., Zarestky, J.L., Mook, H.A., Chen, G.F., Luo, J.L., Wang, N.L. and Dai, P. (2008) Nature, 453, 899-902. http://dx.doi.org/10.1038/nature07057

[12]   Cao, C., Hirschfeld, P.J., Cheng, H.P. (2008) Physical Review B, 77, 220506.
http://dx.doi.org/10.1103/PhysRevB.77.220506

[13]   Manske, D. (2004) Theory of Unconventional Superconductors. In: Hohler, G., Ed., Springer Tracts in Modern Physics, Vol. 202, Springer Verlag, Berlin, 1-228.

[14]   Krasinkova, M.V. (2006) Physica C, 449, 33-40. http://dx.doi.org/10.1016/j.physc.2006.06.048

[15]   Krasinkova, M.V. (2008) A New Approach to the Electron State in Transition Metal Oxides. In: Watanabe, T., Ed., Leading-Edge Superconductivity Research Developments, Nova Science Publishers, Inc., 183-193.

[16]   Kamihara, Y., Hirano, M., Yanagi, H., Kamiya, T., Saitoh, Y., Ikenaga, E., Kobayashi, K. and Hosono, H. (2008) Physical Review B, 77, 214515. http://dx.doi.org/10.1103/PhysRevB.77.214515

[17]   Zhang, C.J., Oyanagi, H., Sun, Z.H., Kamihara, Y. and Hosono, H. (2008) Physical Review B, 78, 214513.
http://dx.doi.org/10.1103/PhysRevB.78.214513

[18]   Kreyssig, A., Green, M.A., Lee, Y., Samolyuk, G.D., Zajdel, P., Lynn, J.W., Bud’ko, S.L., Torikachvili, M.S., Ni, N., Nandi, S., Leao, J.B., Poulton, S.J., Argyriou, D.N., Harmon, B.N., McQueeney, R.J., Canfield, P.C. and Goldman, A.I. (2008) Physical Review B, 78, 184517. http://dx.doi.org/10.1103/PhysRevB.78.184517

[19]   Krasinkova, M.V. (2013) Highly Correlated Electron State and High-Temperature Superconductivity in Iron Pnictides.
http://arXiv.org/abs/1302.6002

 
 
Top