JCPT  Vol.4 No.2 , April 2014
Reinvestigation of the Crystal Growth of “L-Proline Succinate” and “L-Threonine Zinc Acetate” Showing Use of Infrared Spectra for Product Identification
Reinvestigation of the growth of L-proline succinate (1) (Paramasivam and Ramachandra Raja, Journal of Crystallization Process and Technology, 2 (2012) 21 - 24; Balamurugaraj et al., Journal of Material Physics and Chemistry 1 (2013) 4 - 8) and L-threonine zinc acetate (2) (Puhal Raj and Ramachandra Raja, Photonics and Optoelectronics, 2 (2013) 56 - 64) is reported. Slow evaporation of an aqueous solution containing equimolar quantities of L-proline and succinic acid (for 1) and L-threonine and zinc acetate (for 2) results in the fractional crystallization of succinic acid (in the first case) and L-threonine (in the second case) and not any novel organic non-linear optical (NLO) crystals. In this paper, the usefulness of infrared spectra for correct product characterization is demonstrated.

Cite this paper
Natarajan, S. , R. Srinivasan, B. and Moovendaran, K. (2014) Reinvestigation of the Crystal Growth of “L-Proline Succinate” and “L-Threonine Zinc Acetate” Showing Use of Infrared Spectra for Product Identification. Journal of Crystallization Process and Technology, 4, 121-125. doi: 10.4236/jcpt.2014.42015.
[1]   Fleck, M. and Petrosyan, A.M. (2010) Difficulties in the Growth and Characterization of Non-Linear Optical Materials: A Case Study of Salts of Amino Acids. Journal of Crystal Growth, 312, 2284-2290.

[2]   Petrosyan, A.M., Ghazaryan, V.V. and Fleck, M. (2013) On the Existence of “L-Threonine Formate”, “L-Alanine Lithium Chloride” and “Bis L-Alanine Lithium Chloride” Crystals. Spectrochimica Acta Part A, 105, 623-625.

[3]   Srinivasan, B.R. and Jyai, R.N. (2014) Reinvestigation of Growth of “L-Valine Zinc Sulphate” Crystal. Spectrochimica Acta Part A, 120, 621-624.

[4]   Srinivasan, B.R. and Dhavskar, K.T. (2014) Comments on the Paper: Comparative Study of Mechanical, Dielectric and Electrical Properties of Solution Grown Semi-Organic NLO Crystal Glycine with Additives-Ammonium Oxalate, Potassium and Barium Nitrate. Indian Journal of Pure & Applied Physics, 52, 60-63.

[5]   Srinivasan, B.R. (2013) On the Existence of “L-Alanine Cadmium Bromide”. Spectrochimica Acta Part A, 116, 639-641.

[6]   Paramasivam, P. and Ramachandra Raja, C. (2012) Crystallization and Characterization of a New Non-Linear Optical Crystal: L-Proline Succinate (LPS). Journal of Crystallization Process and Technology, 2, 21-24.

[7]   Balamurugaraj, P., Suresh, S., Koteeswari, P. and Mani, P. (2013) Growth, Optical, Mechanical, Dielectric and Photoconductivity Properties of L-Proline Succinate NLO Single Crystal. Journal of Material Physics and Chemistry, 1, 4-8.

[8]   Puhal Raj, A. and Ramachandra Raja, C. (2013) Synthesis, Growth, Structural, Spectroscopic, Thermal and Optical Properties of NLO Single Crystal: L-Threonine Zinc Acetate. Photonics and Optoelectronics (P&O), 2, 56-64.

[9]   Leviel, J.L., Auvert, G. and Savariault, J.M. (1981) Hydrogen Bond Studies. A Neutron Diffraction Study of the Structures of Succinic Acid at 300 and 77 K. Acta Crystallographica B, 37, 2185-2189.

[10]   Thalladi, V.R., Nusse, M. and Boese, R. (2000) The Melting Point Alternation in α, ω-Alkanedicarboxylic Acids. Journal of the American Chemical Society, 122, 9227-9236.

[11]   Gopalan, R.S., Kumaradhas, P., Kulkarni, G.U. and Rao, C.N.R. (2000) An Experimental Charge-Density Study of Aliphatic Dicarboxylic Acids. Journal of Molecular Structure, 521, 97-106.

[12]   The Merck Index (1976) An Encyclopedia of Chemicals and Drugs. 9th Edition, Merck & Co. Inc Rahway, NJ, USA.