JMP  Vol.5 No.6 , April 2014
The AdS5 × S5 Fermionic Model
ABSTRACT

We consider the AdS5 × S5 integrable model. As it turns out, relying on well known arguments, we claim that the conformally invariant fermionic model is solvable, the resulting solution given in terms of two current algebras realizations.


Cite this paper
Abdalla, E. and Lima-Santos, A. (2014) The AdS5 × S5 Fermionic Model. Journal of Modern Physics, 5, 483-487. doi: 10.4236/jmp.2014.56059.
References
[1]   Abdalla, E., Abdalla, M.C.B. and Rothe, K.D. (2001) Non Perturbative Methods in 2-Dimensional Quantum Field Theory, World Scientific.

[2]   Eichenherr, H. and Forger, M. (1981) Communications in Mathematical Physics, 82, 227.

[3]   Abdalla, E., Abdalla, M.C.B. and Forger, M. (1988) Nuclear Physics B, 297, 374.
Abdalla, E. and Forger, M. (1986) Communications in Mathematical Physics, 104, 123.
Abdalla, E. and Abdalla, M.C.B. (1981) M. Gomes Physical Review D, 23, 1800.
http://dx.doi.org/10.1103/PhysRevD.27.825

[4]   Abdalla, E., Forger, M. and Gomes, M. (1982) Nuclear Physics, B210, 181.
http://dx.doi.org/10.1016/0550-3213(82)90238-3

[5]   Luscher, M., Pohlmeyer, K. (1978) Nuclear Physics, B137, 46. http://dx.doi.org/10.1016/0550-3213(78)90049-4

[6]   Zamolodchikov, A.B. and Zamolodchikov, A.B. (1979) Annals of Physics, 120, 253-291.
http://dx.doi.org/10.1016/0003-4916(79)90391-9

[7]   Abdalla, E., Abdalla, M.C.B., Lima-Santos, A. (1984) Physical Letters, B140, 71-75.
http://dx.doi.org/10.1016/0370-2693(84)91050-5

[8]   Abdalla, E. and Forger, M. (1851) A. Lima Santos Nuclear Physics, B256, 145.
http://dx.doi.org/10.1016/0550-3213(85)90389-X

[9]   Abdalla, E. (1984) A. Lima-Santos Physical Review, D29, 1851. http://dx.doi.org/10.1103/PhysRevD.29.1851

[10]   Lima-Santos, A. and Martins, M.J. (2007) Nuclear Physics, B760, 184-196.
Lima-Santos, A. (2006) Journal of Statistical Mechanics, 0612, P12018.
Malara, R. and Lima-Santos, A. (2006) Journal of Statistical Mechanics, 0609, P09013.
Kurak, V. (2005) A. Lima-Santos Journal of Physics, A38, 2359-2374.

[11]   Gross, D.J. (1974) Andre Neveu Physical Reviews, D10, 3235. http://dx.doi.org/10.1103/PhysRevD.10.3235

[12]   Abdalla, E., Berg, B. and Weisz, P. (1979) Nuclear Physics, B157, 387.
http://dx.doi.org/10.1016/0550-3213(79)90110-X

[13]   Koberle, R., Kurak, V., Swieca, J.A. (1979) Physical Reviews, D20, 897. http://dx.doi.org/10.1103/PhysRevD.20.897

[14]   Dashen, R.F. and Frishman, Y. (1975) Physical Reviews, D11, 2781. http://dx.doi.org/10.1103/PhysRevD.11.2781

[15]   Bena, I., Polchinski, J. and Roiban, R. (2004) Physical Reviews, D69, 046002.
http://dx.doi.org/10.1103/PhysRevD.69.046002

[16]   Maldacena, J. and Ooguri, H. (2001) Journal of Mathematical Physics, 42, 2929.
http://dx.doi.org/10.1063/1.1377273

[17]   Maldacena, J. and Maoz, L. (2002) 046; I. Bakas and J. Sonnenschein JHEP 0212 (2002) 049.

[18]   Vallilo, B. (2004) JHEP 0403 (2004) 037.

[19]   Mandal, G., Suryanarayana, N.V. and Wadia, S.R. (2002) Physical Letters, B543, 81.
http://dx.doi.org/10.1016/S0370-2693(02)02424-3

[20]   Berenstein, D., Maldacena, J.M. and Nastase, H. (2002) JHEP 0204 (2002) 013.

[21]   Hatsuda, M. and Yoshida, K. (2005) Advances in Theoretical and Mathematical Physics, 9, 703-728.

[22]   Kluson, J. (2007) 040; Nathan Berkovits JHEP 0502 (2005) 060.

[23]   Maldacena, J.M. (1998) Advances in Theoretical and Mathematical Physics, 2, 231-252.

 
 
Top