JEP  Vol.5 No.5 , April 2014
Bi-Enzymatic Conductometric Biosensor for Detection of Heavy Metal Ions and Pesticides in Water Samples Based on Enzymatic Inhibition in Arthrospira platensis
Abstract: An original bi-enzymatic biosensor was designed by immobilizing Arthrospira platensis cells, called Spirulina, on gold interdigitated transducers. Phosphatase and esterase activities were inhibited, respectively, by heavy metals and by pesticides. Inhibition activities were observed with different mixtures of pesticides + heavy metals. The quantification limits for Cd2+ and Hg2+ are 10-20 M in mixture and in pure solution. The quantification limits of parathion-methyl, paraoxon-methyl and triazine are respectively 10-20 M, 10-18 M and 10-20 M in mixture and pure solutions. These results show that there is no synergistic effect between the two families of pollutants. Qualitative contamination of effluent samples and their purification after passing through a municipal wastewater treatment plant were observed by our bi-enzymatic biosensor and confirmed by classical analytical techniques for heavy metal ions.
Cite this paper: Tekaya, N. , Saiapina, O. , Ouada, H. , Lagarde, F. , Namour, P. , Ouada, H. and Jaffrezic-Renault, N. (2014) Bi-Enzymatic Conductometric Biosensor for Detection of Heavy Metal Ions and Pesticides in Water Samples Based on Enzymatic Inhibition in Arthrospira platensis. Journal of Environmental Protection, 5, 441-453. doi: 10.4236/jep.2014.55047.

[1]   Kamanyire, R. and Karalliedde, L. (2004) Organophosphate Toxicity and Occupational Exposure. Occupational Medicine, 54, 69-75.

[2]   Alavanja, M.C.R., Dosemeci, M., Samanic, C., Lubin, J., Lynch, CF., Knott, C., et al. (2004) Pesticides and Lung Cancer Risk in the Agricultural Health Study Cohort. American Journal of Epidemiology, 160, 876-885.

[3]   Sbartai, A., Namour, P., Errachid, A., Krejci, J., Sejnohova, R., Renaud, L., Hamlaoui, M.L., Loir, A.S., Garrelie, F., Donnet, C., Soder, H., Audouard, E., Granier, J. and Jaffrezic-Renault, N. (2012) Electrochemical Boron-Doped Diamond Film Microcells Micromachined with Femtosecond Laser: Application to the Determination of Water Framework Directive Metals. Analytical Chemistry, 84, 4805-4811.

[4]   Dennison, M.J. and Turner, A.P.F. (1995) Biosensors for Environmental Monitoring. Journal of Biotechnology, Adv. 13, 1.

[5]   Tekaya, N., Saiapina, O., Ben Ouada, H., Lagarde, F., Ben Ouada, H. and Jaffrezic-Renault, N. (2013) Ultra-Sensitive Conductometric Detection of Heavy Metals Based on Inhibition of Alkaline Phosphatase Activity from Arthrospira platensis. Journal of Bioelectrochemistry, 90, 24-29.

[6]   Tekaya, N., Saiapina, O., Ben Ouada, H., Lagarde, F., Ben Ouada, H. and Jaffrezic-Renault, N. (2013) Ultra-Sensitive Conductometric Detection of Pesticides Based on Inhibition of Esterase Activity in Arthrospira platensis. Environmental Pollution, 178, 182-188.

[7]   Tekaya, N., Gammoudi, I., Braiek, M., Tarbague, H., Moroté, F., Raimbault, V., Sakly, N., Rebière, D., Ben Ouada, H., Lagarde, F., Ben Ouada, H., Cohen-Bouhacina, T., Dejous, C. and Jaffrezic Renault, N. (2013) Acoustic, Electrochemical and Microscopic Characterization of Interaction of Arthrospira platensis Biofilm and Heavy Metal Ions. Journal of Environmental Chemical Engineering, 1, 609-619.

[8]   Tekaya, N., Sakly, N., Ben Ouada, H., Ben Ouada, H., Jaffrezic-Renault, N. and Lagarde, F. (2011) Impedimetric Characterization of Alginate Entrapped Arthrospira platensis at a Platinum/Electrolyte Interface. Effect of Cadmium Ions. Sensor Letters, 9, 1-5.

[9]   Halamek, J., Pribyl, J., Makower, A., Skladal, P. and Scheller, F.W. (2005) Sensitive Detection of Organophosphates in River Water by Means of a Piezoelectric Biosensor. Analytical and Bioanalytical Chemistry, 382, 1904-1911.

[10]   Marty, J.L., Garcia, D. and Rouillon, R. (1995) Biosensor: Potential in Pesticide Detection. Trends in Analytical Chemistry, 14, 329-333.

[11]   La Rosa, C., Pariente, F., Hernandez, L. and Lorenzo, E. (1995) Amperometric Flow-Through Biosensor from the Determination of Pesticides. Analytica Chimica Acta, 308, 129-136.

[12]   Campanella, L., Achilli, M., Sammartino, M.P. and Tomassetti, M. (1991) Butyrylcholine Enzyme Sensor for Determining Organophosphorus Inhibitors. Bioelectrochemistry and Bioenergetics, 26, 237.

[13]   Martorell, D., Cespedes, F., Martinez-Fabregas, E. and Alegret, S. (1994) Amperometric Determination of Pesticides Using Biosensor Based on Polishable Graphite-Epoxy Biocomposit. Analytica Chimica Acta, 290, 343-348.

[14]   Gogol, E.V., Evtugyn, G.A, Marty, J.L, Budnikov, H.C and Winter, V.G. (2000) Amperometric Biosensors Based on Nafion Coated Screen-Printed Electrodes for the Determination of Cholinesterase Inhibitors. Talanta, 53, 379-389.

[15]   Mulchandani, A., Chen, W., Mulchandani, P., Wang, J. and Rogers, K.R. (2001) Biosensors for Direct Determination of Organophosphate Pesticides. Biosensors and Bioelectronics, 16, 225-230.

[16]   Marty, J.L., Mionetto, N., Noguer, T., Ortega, T. and Roux, C. (1993) Enzyme Sensors for the Detection of Pesticides. Biosensors and Bioelectronics, 8, 273-280.

[17]   Bernabei, M., Cremisini, C., Mascini, M. and Palleschi, G. (1991) Determination of Organophophorus and Carbamic Pesticides with a Choline and Acetylcholine Electrochemical Biosensor. Analytical Letters, 24, 1317-1331.

[18]   Dzyadevych, S.V., Shulga, A.A., Soldalkin, A.P., Hendji, A.M.N., Jaffrezic-Renault, N. and Martelet, C. (1994) Conductometric Biosensors Based on Cholinesterases for Sensitive Detection of Pesticides. Electroanalysis, 6, 752-758.

[19]   Rekha, K., Thakur, M.S. and Karanth, N.G. (2000) Biosensors for Detection of Organophosphorous Pesticides. Critical Reviews in Biotechnology, 20, 213-235.

[20]   Zhylyak, G.A., Dzyadevych, S.V., Korpan, Y.I., Soldatkin, A.P. and El’Skaya, A.V. (1995) Application of Urease Conductometric Biosensor for Heavy Metal Ion Determination. Sensors and Actuators B: Chemical, 24, 145-148.

[21]   Arkhypova, V.N., Dzyadevych, S.V., Soldatkin, A.P., El’skaya, A.V., Jaffrezic-Renault, N., Jaffrezic, H. and Martelet, C. (2001) Multibiosensor Based on Enzyme Inhibition Analysis for Determination of Different Toxic Substances. Talanta, 55, 919-927.

[22]   Jaffrezic-Renault, N. and Dzyadevych, S.V. (2008) Conductometric Microbiosensors for Environmental Monitoring. Sensors, 8, 2569-2588.

[23]   Berezhetskyy, L., Durrieu, C., Nguyen-Ngoc, H., Chovelon, J.M., Dzyadevych, S.V. and Tran-Minh, C. (2007) Development of Conductometric Biosensors Based on Alkaline Phosphatases for the Water Quality Control. Biopolymers and Cell, 23, 511-518.

[24]   Durrieu, C. and Tran-Minh, C. (2002) Optical Algal Biosensor Using Alkaline Phosphatase for Determination of Heavy Metals. Ecotoxicology and Environmental Safety, 51, 206-209.

[25]   Pandard, P., Vasseur, P. and Rawson, D.M. (1993) Comparison of Two Types of Sensors Using Eukaryotic Algae to Monitor Pollution of Aquatic Systems. Water Research, 27, 427-431.

[26]   Chouteau, C., Dzyadevych, S., Durrieu, C. and Chovelon, J.M. (2005) A Bi-Enzymatic Whole Cell Conductometric Biosensor for Heavy Metal Ions and Pesticides Detection in Water Samples. Biosensors and Bioelectronics, 21, 273-281.

[27]   Guedri, H. and Durrieu, C. (2008) A Self-Assembled Monolayers Based Conductometric Algal Whole Cell Biosensor for Water Monitoring. Microchimica Acta, 163, 179-184.

[28]   Tekaya, N., Tarbague, H., Moroté, F., Gammoudi, I., Sakly, N., Ben Ouada, H., Raimbault, V., Rebière, D., Ben Ouada, H., Jaffrezic-Renault, N., Lagarde, F., Dejous, C. and Cohen-Bouhacina, T. (2012) Optimization of Spirulina Biofilm for in-Situ Heavy Metals Detection with Microfluidic-Acoustic Sensor and AFM. Proceedings of Meeting on Chemical Sensors (IMCS), Nuremburg, 20-23 May 2012, 92-95.

[29]   Salvi, S., Trinei, M., Lanfaloni, L. and Pon, C.L. (1994) Cloning and Characterization of the Gene Encoding an Esterase from Spirulina platensis. Molecular and General Genetics, 243, 124-126.

[30]   Luo, H., Benner, R., Long, R.A. and Hu, J. (2009) Subcellular Localization of Marine Bacterial Alkaline Phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 106, 21219-21223.

[31]   Dzyadevych, S.V., Arkhypova, V.N., Korpan, Y.I., El’skaya, A.V., Soldatkin, A.P., Jaffrezic-Renault, N. and Martelet, C. (2001) Conductometric Formaldehyde Sensitive Biosensor with Specifically Adapted Analytical Characteristics. Analytica Chimica Acta, 445, 47-55.

[32]   Anh, T.M., Dzyadevych, S.V., Van, M.C., Jaffrezic Renault, N., Duc, C.N. and Chovelon, J.M. (2004) Conductometric Tyrosinase Biosensor for the Detection of Diuron, Atrazine and Its Main Metabolites. Talanta, 63, 365-370.

[33]   Nouira, W., Maaref, A., Vocanson, F., Siadat, M., Saulnier, J., Lagarde, F. and Jaffrezic-Renault, N. (2012) Enhancement of Enzymatic IDE Biosensor Response Using Gold Nanoparticles. Exemple of the Detection of Urea. Electroanalysis, 24, 1088-1094.

[34]   Arkhypova, V.М., Bereghetskyy, A.L., Shulga, O.A., Chovelon, J.М., Soldatkin, O.P. and Dzyadevych, S.V. (2005) Investigation and Optimization of Conductometric Transducers Based on Planar Technology. Sensor Electronics and Microsystem Technologies, 2, 48-54.

[35]   Dzyadevych, S.V., Soldatkin, A.P., Soldatkin, A.A., Peshkova, V.N., Vasilenko, A.D., Melnik, V.G., Mikhal, A.A., Semenycheva, L.N. and Rubanchuk, M.P. (2009) Four-Channel Biosensor’s Analyser of Saccharides. Sensor Electronics and Microsystem Technologies, 3, 47-53.

[36]   Dzyadevych, S.V., Soldatkin, A.P. and Chovelon, J.M. (2002) Assessment of the Toxicity of Methyl Parathion and Its Photodegradation Products in Water Samples Using Conductometric Enzyme Biosensors. Analytica Chimica Acta, 459, 33-41.

[37]   Villatte, F., Marcel, V., Estrada-Mondaca, S. and Fournier, D. (1998) Engineering Sensitive Acetylcholinesterase for Detection of Organophosphate and Carbamate Insecticides. Biosensors and Bioelectronics, 13, 157-164.