Tree Network Formation in Poisson Equation Models and the Implications for the Maximum Entropy Production Principle

Show more

References

[1] Mandelbrot, B.B. (1982) The Fractal Geometry of Nature. Freeman, San Francisco.

[2] Rodriguez-Iturbe, I. and Rinaldo, A. (1997) Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambridge.

[3] Shimokawa, M. and Ohta, S. (2012) Annihilative Fractals Formed in Rayleigh-Taylor instability. Fractals, 20, 97-104.

http://dx.doi.org/10.1142/S0218348X12500090

[4] Prigogine, I. (1962) Introduction to Non-Equilibrium Thermodynamics. Wiley-Interscience, New York.

[5] Prigogine, I. and Stengers, I. (1984) Order out of Chaos: Man’s New Dialogue with Nature. Bantam Books, New York.

[6] Kondepudi, D. and Prigogine, I. (1998) Modern Thermodynamics: From Heat Engines to Dissipative Structures. John Wiley & Sons, New York.

[7] Kleidon, A. and Lorenz, R.D. (2004) Entropy Production by Earth System Processes. In: Kleidon, A. and Lorenz, R.D., Eds., Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond, Springer-Verlag, Berlin, 1-20.

[8] Martyushev, L.M. and Seleznev, V.D. (2006) Maximum Entropy Production Principle in Physics, Chemistry and Biology. Physics Reports, 426, 1-45.

http://dx.doi.org/10.1016/j.physrep.2005.12.001

[9] Schrodinger, E. (1944) What Is Life? The Physical Aspect of the Living Cell. Cambridge University Press, Cambridge.

[10] Shimokawa, S. and Ozawa, H. (2002) On the Thermodynamics of the Oceanic General Circulation: Irreversible Transition to a State with Higher Rate of Entropy Production. Quarterly Journal of the Royal Meteorological Society, 128, 2115-2128.

http://dx.doi.org/10.1256/003590002320603566

[11] Meysman, F.J.R. and Bruers, S. (2010) Ecosystem Functioning and Maximum Entropy Production: A Quantitative Test of Hypotheses. Philosophical Transactions of the Royal Society B-Biological Science, 365, 1405-1416.

http://dx.doi.org/10.1098/rstb.2009.0300

[12] Bejan, A. and Lorente, S. (2006) Constructal Theory of Generation of Configuration in Nature and Engineering. Journal of Applied Physics, 100, Article ID: 041301.

http://dx.doi.org/10.1063/1.2221896

[13] Bejan, A. (2007) Constructal Theory of Pattern Formation. Hydrology and Earth System Sciences, 11, 753-768.

http://dx.doi.org/10.5194/hess-11-753-2007

[14] Kleidon, A. (2010) Life, Hierarchy, and the Thermodynamic Machinery of Planet Earth. Physics of Life Reviews, 7, 424-460. http://dx.doi.org/10.1016/j.plrev.2010.10.002

[15] Bejan, A. (2010) Design in Nature, Thermodynamics, and the Constructal Law. Comment on “Life, Hierarchy, and the Thermodynamic Machinery of Planet Earth” by Kleidon. Physics of Life Reviews, 7, 467-470.

http://dx.doi.org/10.1016/j.plrev.2010.10.008

[16] Kleidon, A. (2010) Life as the Major Driver of Planetary Geochemical Disequilibrium. Reply to Comments on “Life, Hierarchy, and the Thermodynamic Machinery of Planet Earth”. Physics of Life Reviews, 7, 473-476.

http://dx.doi.org/10.1016/j.plrev.2010.11.001

[17] Errera, M.R. and Bejan, A. (1998) Deterministic Tree Networks for River Drainage Basins. Fractals, 6, 245-261.

http://dx.doi.org/10.1142/S0218348X98000298

[18] Marin, C.A. and Errera, M.R. (2009) A Comparison between Random and Deterministic Dynamics of River Drainage Basins Formation. Engenharia Térmica (Thermal Engineering), 8, 65-71.

[19] Miyamoto, H., Baker, V.R. and Lorenz, R.D. (2004) Entropy and the Shaping and the Landscape by Water. In: Kleidon, A. and Lorenz R.D., Eds., Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond, Springer-Verlag, Berlin, 135-146.