ioquímicos)-Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

[26]   Sato, K. and Sudo, S. (1999) Small-Scale Solid-State Fermentations. Manual of Industrial Microbiology and Biotechnology, 6, 60-79.

[27]   Bianchi, V.L.D., Moraes, I.O. and Capalbo, D.M.F. (2001) Fermentação em estado sólido. In: Schmidell, W.I., Lima, V.A., Aquarone, E. and Borzani, W., Eds., Biotecnologia Industrial, Vol. 3, Edgard Blucher Ltda, São Paulo, 247-276.

[28]   Buswell, J.A., Cai, Y.J., Changs, S.T., Peberdy, J.F., Fu, S.Y. and Yu, H.S. (1998) Lignocellulolytic Enzyme Profiles of Edible Mushroom Fungi. World Journal of Microbiology and Biotecnology, 12, 537-542.

[29]   Jan, H.D. and Chen, K.S. (2003) Production and Characterization of Thermostable Cellulases from Streptomyces Transformant T3-1. World Journal Microbiology and Biotechnology, 19, 263-268. http://dx.doi.org/10.1023/A:1023641806194

[30]   Dalsenter, F.D.H., Viccini, G., Barga, M.C., Mitchell, D.A. and Krieger, N. (2005) A Mathematical Model Describing the Effect of Temperature Variations on the Kinetics of Microbial Growth in Solid-State Culture. Process Biochemistry, 40, 801-807. http://dx.doi.org/ 10.1016/j.procbio.2004.02.007

[31]   Mitchell, D.A., Berovic, M. and Krieger, N. (2006) Solid-State Fermentation Bioreactors. In: Mitchell, D.A., Krieger, N. and Berovic, M., Eds., Springer, Heidelberg, 19.

[32]   Gomes, E., Guez, M.A.U., Martin, N. and da Silva, R. (2007) Enzimas termoestáveis: Fontes, produção e aplicação industrial. Química Nova, 30, 136-145. http://dx.doi.org/10.1590/S0100-4042200 7000100025

[33]   Carvalho, R.V., Cõrrea, T.L.R., Silva, J.C.M., Mansur, L.R.C.O. and Martins, M.L.L. (2008) Properties of an Amylase from Thermophilic Bacillus sp. Brazilian Journal of Microbiology, 39, 102-107. http://dx.doi.org/10.1590/S1517-83822008000100023.

[34]   Taneda, D., Ueno, Y., Ikeo, M. and Okino, S. (2012) Characteristics of Enzyme Hydrolysis of Cellulose under Static Condition. Bioresource Technology, 121, 154-160. http://dx.doi.org/10.1016/j. biortech.2012.06.104

[35]   Camassola, M., Bittencourt, L.R., Shenem, N.T., Andreaus, J. and Dillon, A.J.P. (2004) Characterization of the Cellulase Complex of Penicillium echinulatum. Biocatalysis and Biotransformation, 22, 391-396. http://dx.doi.org/ 10.1080/10242420400024532

[36]   Alam, M.Z., Muyibi, S.A. and Wahid, R. (2008) Statistical Optimization of Process Conditions for Cellulase Production by Liquid State Bioconversion of Domestic Wastewater Sludge. Bioresource Technology, 99, 4709-4716. http://dx.doi.org/10.1016/ j.biortech.2007.09.072

[37]   Qin, Y., Wei, X., Song, X. and Qu, Y. (2008) Engineering Endoglucanase II from Trichoderma reesei to Improve the Catalytic Efficiency at a Higher pH Optimum. Journal of Biotechnology, 135, 190-195.

[38]   Zhang, J., Tang, M. and Viikari, L. (2012) Xylans Inhibit Enzymatic Hydrolysis of Lignocellulosic Materials by Cellulases. Bioresource Technology, 121, 8-12.

[39]   Bendig, C. and Weuster-Botz, D. (2012) Reaction Engineering Analysis of Cellulase Production with Trichoderma reesei RUT-C30 with Intermittent Substrate Supply. Bioprocess and Biosystems Engineering, 132, 121-128.

[40]   Puglisi, I., Faedda, R., Sanzaro, V., Lo Piero, A.R., Petrone, G. and Cacciola, S.O. (2012) Identification of Differentially Expressed Genes in Response to Mercury I and II Stress in Trichoderma harzianum. Gene, 506, 325-330.

[41]   Castro, A.M. (2006) Produção e Propriedades de Celulases de Fungos Filamentosos, obtidas a partir de Celulignina de Bagaço de cana-de-açucar (Saccharum spp.). Dissertação de Mestrado, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

[42]   Rodríguez-Zúñiga, U.F., Farinas, C.S., Bertucci Neto, V., Couri, S. and Crestana, S. (2011) Produção de celulases por Aspergillus niger por fermentação em estado sólido. Pesquisa Agropecuária Brasileira, 46, 912-919. http://dx.doi.org/10.1590/S0100-204X2011000800018.

[43]   Camassola, M., Bittencourt, L.R., Shenem, N.T., Andreaus, J. and Dillon, A.J.P. (2004) Characterization of the Cellulase Complex of Penicillium echinulatum. Biocatalysis and Biotransformation, 22, 391-396. http://dx.doi.org/ 10.1080/10242420400024532

[44]   Spier, M.R. (2005) Produção de enzimas amilolíticas fúngicas α-amilase e amiloglucosidase por fermentação no estado sólido. Dissertação (Mestrado em Tecnologia de Alimentos), Universidade Federal do Paraná, Curitiba.

[45]   Zhang, Y.H.P., Himmel, M.E. and Mielenz, J.R. (2006) Outlook for Cellulase Improvement: Screening and Selection Strategies. Biotechnology Advances, 24, 452-481.
http://dx.doi.org/10.1016/j.biotechadv.2006.03.003

[46]   Chandra, M.S., Viswanath, B. and Reddy, B.R. (2007) Cellulolytic Enzymes on Lignocellulosic Substrates in Solid Sate Fermentation by Aspergillus niger. Indian Journal of Microbiology, 47, 323-328. http://dx.doi.org/10.1007/s12088-007-0059-x

[47]   Sanchez, C. (2009) Lignocellulosic Residues: Biodegradation and Bioconversion by Fungi. Biotechnology Advances, 27, 185-194. http://dx.doi.org/10.1016/j.biotechadv.2008.11.001

[48]   Ahamed, A. and Vermette, P. (2010) Effect of Mechanical Agitation on the Production of Cellulases by Trichoderma reesei RUT-C30 in a Draft-Tube Airlift Bioreactor. Biochemical Engineering Journal, 49, 379-387.http://dx.doi.org/10.1016/j.bej.2010.01.014

[49]   Gao, D., Chundawat, S.P.S., Uppugundla, N., Balan, V. and Dale, B.E. (2011) Binding Characteristics of Trichoderma reesei Cellulases on Untreated, Ammonia Fiber Expansion (AFEX), and Dilute-Acid Pretreated Lignocellulosic Biomass. Biotechnology and Bioengineering, 108, 1788-1800.
http://dx.doi.org/10.1002/bit.23140

 
 
Top