[1] Barsoum, M.W. and El-Raghy, T. (1996) Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2, Journal of the American Ceramic Society, 79, 1996, 1953-1956.
http://dx.doi.org/10.1111/j.1151-2916.1996.tb08018.x
[2] El-Raghy, T., Zavaliangos, A., Barsoum, M.W. and Kalidinidi, S. (1997) Damage Mechanisms around Hardness Indentations in Ti3SiC2. Journal of the American Ceramic Society, 80, 1997, 513-520.
http://dx.doi.org/10.1111/j.1151-2916.1997.tb02861.x
[3] Barsoum, M.W., El-Raghy, T. and Ogbuji, L. (1997) Oxidation of Ti3SiC2 in Air. Journal of the Electrochemical Society, 144, 1997, 2508-2516. http://dx.doi.org/10.1149/1.1837846
[4] Barsoum, M.W. and El-Raghy, T. (1997) Diffusion Kinetics of the Carburization and Silicidation of Ti3SiC2. Journal of Materials Synthesis and Processing, 5, 1997, 197-216.
[5] El-Raghy, T. and Barsoum, M.W. (1998) Diffusion Kinetics of the Carburization and Silicidation of Ti3SiC2. Journal of Applied Physics, 83, 1998, 112-120.
http://dx.doi.org/10.1063/1.366707
[6] Kisi, E.H., Crossley, J.A.A., Myhra, S. and Barsoum, M.W. (1998) Structure and Crystal Chemistry of Ti3SiC2. Journal of Physics and Chemistry of Solids, 59, 1437-1443.
http://dx.doi.org/10.1016/S0022-3697(98)00226-1
[7] Low, I.M., Lee, S.K., Lawn, B. and Barsoum, M.W. (1998) Contact Damage Accumulation in Ti3SiC2. Journal of the American Ceramic Society, 81, 1998, 225-231.
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02320.x
[8] Farber, L., Barsoum, M.W., Zavaliangos, A. and Levin, I. (1998) Dislocations and Stacking Faults in Ti3SiC2. Journal of the American Ceramic Society, 81, 1998, 1677-1681.
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02532.x
[9] Jeitschko, W. and Nowotny, H. (1967) Die Kristallstruktur von Ti3SiC2 ein Neuer Komplexcarbid-Typ. Monatshefte für Chemie/Chemical Monthly, 98, 329-337.
[10] Panczyk, J., Niemyski, T., Vinogradov, L. and Sinelnikova, V. (2000) Production of Ti3SiC2 Material. Applied Physics Letters, 76, 1972-1976.
[11] Goto, T. and Hirai, T. (1987) chemically-Vapor Deposited Ti3SiC. Materials Research Bulletin, 22, 1195-1201.
http://dx.doi.org/10.1016/0025-5408(87)90128-0
[12] Pampuch, R., Lis, J., Piekarczyk, J. and Stobierski, L. (1993) Ti3SiC2-Based Materials Produced by Self-Propagating High Temperature Synthesis and Ceramic Processing. Journal of Materials Synthesis and Processing, 1, 93-100.
[13] Onodera, A., Hirano, H., Yuasa, T., Guo, N.F. and Miyamoto, Y. (1999) Static compression of Ti3SiC2 to 61 GPa. Applied Physics Letters, 74, 3782-3796. http://dx.doi.org/10.1063/1.124178
[14] Takitani, Y., Matuki, T., Li, J.-F. and Watanabe, R. (2003) Evaluation of Ti3SiC2 Prepared by Mechanical Alloying. Journal of the Japan Society of Powder and Powder Metallurgy, 50, 880-884.
[15] Wills, J.M., Eriksson, O., Wills, J.M. and Cooper, B.R. (1987) Synthesis of Band and Model Hamiltonian Theory for Hybridizing Cerium Systems. Physical Review B, 36, 3809-3823.
http://dx.doi.org/10.1103/PhysRevB.36.3809
[16] Andersen, O.K. (1975) Linear Methods in Band Theory. Physical Review B, 12, 3060-3083.
http://dx.doi.org/10.1103/PhysRevB.12.3060
[17] Skriver, H.L. (1984) The LMTO Method. Springer, Berlin. http://dx.doi.org/10.1007/978-3-642-81844-8
[18] Chadi, D.J. and Cohen, M.L. (1973) Special Points in the Brillouin Zone. Physical Review B, 8, 5747-5753.
http://dx.doi.org/10.1103/PhysRevB.8.5747
[19] Pearson, W.B. (1972) The Crystal Chemistry and Physics of Metals and Alloys. Wiley-Interscience, New York, 502-518.
[20] Chang, R. and Graham, L.J. (1966) Low-Temperature Elastic Properties of ZrC and TiC. Journal of Applied Physics, 37, 3778-3786. http://dx.doi.org/10.1063/1.1707923
[21] Ahuja, R., Eriksson, O., Wills, J.M. and Johansson, B. (1996) Structural, Elastic, and High-Pressure Properties of Cubic TiC, TiN, and TiO. Physical Review B, 53, 3072-3087.
http://dx.doi.org/10.1103/PhysRevB.53.3072
[22] Lis, J., Pampuch, R. and Stobierski, L. (1992) Reactions during SHS in a Ti-Si-C System. This International Journal Encompasses Self-Propagating High-Temperature Synthesis, 1, 401-408.
[23] Jin, S.Z., Liang, B.Y., Li, J.F. and Ren, L.Q. (2007) Effect of Al Addition on Phase Purity of Ti3Si(Al)C2 Synthesized by Mechanical Alloying. Journal of Materials Processing Technology, 182, 445-449.
http://dx.doi.org/10.1016/j.jmatprotec.2006.09.001
[24] Zhang, Z.F., Sun, Z.M., Hashimoto, H. and Abe, T. (2003) Fabrication and Microstructure Characterization of Ti3SiC2 Synthesized from Ti/Si/2TiC Powders Using the Pulse Discharge Sintering (PDS) Technique. Journal of the American Ceramic Society, 86, 431-436.
http://dx.doi.org/10.1111/j.1151-2916.2003.tb03317.x
[25] Liang, B.Y., Wang, M.Z., Sun, J.F., Li, X.P., Zhao, Y.C. and Han, X. (2009) Synthesis of Ti SiC in Air Using Mechanically Activated 3Ti/Si/2C Powder. Journal of Alloys and Compounds, 474, L18-L21.
http://dx.doi.org/10.1016/j.jallcom.2008.06.147
[26] Yeh, C.L. and Shen, Y.G. (2008) Effects of SiC Addition on Formation of Ti3SiC2 by Self-Propagating High-Temperature Synthesis. Journal of Alloys and Compounds, 461, 654-660.
http://dx.doi.org/10.1016/j.jallcom.2007.07.088
[27] Zakeri, M., Rahimipour, M.R. and Khanmohammadian, A. (2008) Effect of the Starting Materials on the Reaction Synthesis of Ti3SiC2. Ceramics International, 35, 1553-1557.
http://dx.doi.org/10.1016/j.ceramint.2008.08.011
[28] Liang, B.Y., Jin, S.Z. and Wang, M.Z. (2008) Low-Temperature Fabrication of High Purity Ti3SiC2. Journal of Alloys and Compounds, 460, 440-443.
http://dx.doi.org/10.1016/j.jallcom.2007.05.074
[29] Meng, F.L., Chaffron, L. and Zhou, Y.C. (2009) Synthesis of Ti3SiC2 by High Energy Ball Milling and Reactive Sintering from Ti, Si, and C Elements. Journal of Nuclear Materials, 386-388, 647-649.
[30] Abu, M.J., Mohamed, J.J. and Ahmad, Z.A. (2012) Effect of Excess Silicon on the Formation of Ti3SiC2 Using Free Ti/Si/C Powders Synthesized via Arc Melting. International Scholarly Research Network, ISRN Ceramics, 2012, Article ID: 341285, 10 Pages.
[31] El Saeed, M.A., Deorsola, F.A. and Rashad, R.M. (2012) Optimization of the Ti3SiC2 MAX Phase Synthesis. International Journal of Refractory Metals and Hard Materials, 35, 127-131. http://dx.doi.org/10.1016/j.ijrmhm.2012.05.001
[32] Briggs, D. and Beamson, G. (1992) Primary and Secondary Oxygen-Induced C1s Binding Energy Shifts in X-Ray Photoelectron Spectroscopy of Polymers. Analytical Chemistry, 64, 1729-1736. http://dx.doi.org/10.1021/ac00039a018
[33] Chakri, N.E., Bendjemil, B. and Baricco, M. (2013) The Mechanical Properties of the System and Training Zr59Nb5Cu18Ni8AL10 Bulk Metallic Glasses. Advances in Chemical Engineering and Science, 3, 274-277.
http://dx.doi.org/10.4236/aces.2013.34034