JBPC  Vol.5 No.2 , May 2014
Atherogenic Indices and HDL Particle Size as Laboratory Parameters to Evaluate Cardiovascular Risk in the Presence of Dyslipidemia
Dyslipidemia may influence enzymes and transfer proteins needed to the lipoprotein particle remodeling. Calculated indices and evaluation of lipoprotein particle size have widely been used to predict cardiovascular risk. The aim of this study was to evaluate HDL particle size and LDL particle size estimate based on TG/HDL-C as well as apoB/apoA-I ratio as possible marker and atherogenic indices, respectively, of cardiovascular disease risk in the presence of dyslipidemia. We evaluated 100 individuals of both gender, without treatment with lipid-lowering drugs, 27 normolipidemic and 73 dyslipidemic, such as isolated hypercholesterolemia (n = 16), isolated hypertriglyceridemia (n = 17), low HDL-C (n = 26) and mixed dyslipidemia (n = 14). The HDL particle size did not differ between groups. The TG/HDL-C ratio was higher in groups with isolated hypertriglyceridemia (4.2 ± 1.5), low HDL-C (5.2 ± 3.1) and mixed dyslipidemia (5.3 ± 1.6). The apoB/apoA-I ratio was increased in all groups of dyslipidemia (apoB/apoA-I > 0.5) when compared to normolipidemic (apoB/apoA-I = 0.5, p < 0.001). There was a positive linear correlation between the TG/HDL-C ratio and the apoB/apoA-I ratio in low HDL-C group (r = 0.507, p = 0.008, Spearman). The results suggest that the evaluations of lipoproteins particles remodeling markers and the use of calculated indices may contribute to the evaluation of cardiovascular disease risk when dyslipidemia take place.

Cite this paper
Santos, A. , Vieira, M. , Deus, D. , de Oliveira, R. , Morikawa, A. , Aras, R. , Atta, A. , Couto, F. , Maranhão, R. and Couto, R. (2014) Atherogenic Indices and HDL Particle Size as Laboratory Parameters to Evaluate Cardiovascular Risk in the Presence of Dyslipidemia. Journal of Biophysical Chemistry, 5, 24-32. doi: 10.4236/jbpc.2014.52004.
[1]   Imes, C.C. and Austin, M.A. (2013) Low-Density Lipoprotein Cholesterol, Apolipoprotein B, and Risk of Coronary Heart Disease: From Familial Hyperlipidemia to Genomics. Biological Research for Nursing, 15, 292-308.

[2]   Carr, M.C., Ayyobi, A.F., Murdoch, S.J., Deeb, S.S. and Brunzell, J.D. (2002) Contribution of Hepatic Lipase, Lipo- protein Lipase, and Cholesteryl Ester Transfer Protein to LDL and HDL Heterogeneity in Healthy Women. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 667-673.

[3]   Cheung, M.C., Wolfbauer, G., Deguchi, H., Fernandez, J.A., Griffin, J.H. and Albers, J.J. (2009) Human Plasma Phospholipid Transfer Protein Specific Activity Is Correlated with HDL Size: Implications for Lipoprotein Physiology. Biochimica et Biophysica Acta, 1791, 206-211.

[4]   Deeb, S.S., Zambon, A., Carr, M.C., Ayyobi, A.F. and Brunzell, J.D. (2003) Hepatic Lipase and Dyslipidemia: Interactions among Genetic Variants, Obesity, Gender, and Diet. The Journal of Lipid Research, 44, 279-286.

[5]   Treguier, M., Briand, F., Boubacar, A., Andre, A., Magot, T., Nguyen, P., Krempf, M., Sulpice, T. and Ouguerram, K. (2001) Diet-Induced Dyslipidemia Impairs Reverse Cholesterol Transport in Hamsters. European Journal of Clinical Investigation, 41, 921-928.

[6]   Kontush, A. and Chapman, M.J. (2006) Antiatherogenic Small, Dense HDL: Guardian Angel of the Arterial Wall? Nature Clinical Practice Cardiovascular Medicine, 3, 144-153.

[7]   Lima, E.S. and Maranhao, R.C. (2004) Rapid, Simple Laser-Light-Scattering Method for HDL Particle Sizing in Whole Plasma. Clinical Chemistry, 50, 1086-1088.

[8]   Barter, P., Kastelein, J., Nunn, A. and Hobbs, R. (2003) High-Density Lipoproteins (HDLs) and Atherosclerosis: The Unanswered Questions. Atheroscler, 168, 195-211.

[9]   Arsenalt, B.J., Lemieux, I., Despres, J.P., Gagnon, P., Wareham, N.J., Stroes, E.S.J., Kastelein, J.J.P., Khaw, K. and Boekholdt, S.M. (2009) HDL Particle Size and the Risk of Coronary Heart Disease in Apparently Healthy Men and Women: The EPIC-Norfolk Prospective Population Study. Atheroscler, 206, 276-281.

[10]   Berneis, K.K. and Krauss, R.M. (2002) Metabolic Origins and Clinical Significance of LDL Heterogenity. The Journal of Lipid Research, 43, 1363-1379.

[11]   Maruyama, C., Imamura, K. and Teramoto, T. (2003) Assessment of LDL Particle Size by Triglyceride/HDL-Cholesterol Ratio in Non-Diabetic, Healthy Subjects without Proeminet Hyperlipidemia. Journal of Atherosclerosis and Thrombosis, 10, 186-191.

[12]   Lamarche, B., Andre, T., Moorjani, S., Cantin, B., Dagenais, G.R., Lupien, P.J. and Despres, J.P. (1997) Small, Dense Low-Density Lipoprotein Particles as a Predictor of the Risk of Ischemic Heart Disease in Men: Prospective Results from the Quebec Cardiovascular Study. Circulation, 95, 69-75.

[13]   Sposito, A.C., Caramelli, B., Fonseca, F.A.H. and Bertolami, M.C. (2007) IV Brazilian Guideline for Dyslipidemia and Atherosclerosis Prevention: Department of Atherosclerosis of Brazilian Society of Cardiology. Arquivos Brasileiros de Cardiologia, 88, 2-19.

[14]   Berneis, K., Shames, D.M., Blanche, P.J., La Belle, M., Rizzo, M. and Krauss, R.M. (2004) Plasma Clearance of Human Low-Density Lipoprotein in Humam Apolipoprotein B Transgenic Mice Is Related to Particle Diameter. Metabolism, 53, 483-487.

[15]   Walldius, G., Jungner, I., Holme, I., Aastveit, A.H., Kolar, W. and Steiner, E. (2001) High Apolipoprotein B, Low Apolipoprotein A-I, and Improvement in the Prediction of Fatal Myocardial Infaction (AMORIS Study): A Prospective Study. Lancet, 358, 2026-2033.

[16]   Sniderman, A.D., Furberg, C.D., Keech, A., Lennep, V., Frohlich, J., Jungner, I. and Walldius, G. (2003) Apolipoproteins versus Lipids as Indices of Coronary Risk and as Targets for Statins Treatment. Lancet, 361, 777-780.

[17]   Friedewald, W.T., Levy, R.I. and Fredrickson, D.S. (1972) Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clinical Chemistry, 18, 499-502.

[18]   Lo Prete, A.C., Dina, C.H., Azevedo, C.H., Puk, C.G., Lopes, N.H.M., Hueb, W.A. and Maranhao, R.C. (2009) In Vitro Simultaneous Transfer of Lipids to HDL in Coronary Artery Disease and in Statin Treatment. Lipids, 44, 917-924.

[19]   Puk, C.G., Bocchi, E.A., Lo Prete, A.C., Ferreira, S.M.A., Stolf, N.A.G. and Maranhao, R.C. (2009) Transfer of Cholesterol and Other Lipids from a Lipid Nanoemulsion to High-Density Lipoprotein in Heart Transplant Patients. Journal of Heart and Lung Transplantation, 28, 1075-1080.

[20]   Rye, K.A., Bursill, C.A., Lambert, G., Tabet, F. and Barter, P.J. (2009) The Metabolism and Anti-Atherogenic Properties of HDL. Journal of Lipid Research, 50, 195-200.

[21]   Jia, L., Long, S., Fu, M., Yan, B., Tian, W., Xu, Y. and Gou, L. (2006) Relationship between Total Cholesterol/High-Density Lipoprotein Cholesterol Ratio, Triglyceride/High-Density Lipoprotein Cholesterol Ratio, and High-Density Lipoprotein Subclasses. Metabolism, 55, 1141-1148.

[22]   Azevedo, C.H.M., Wajngarten, M., Lo Prete, A.C., Diament, J. and Maranhao, R.C. (2011) Simultaneous Transfer of Cholesterol, Triglycerides, and Phospholipids to High-Density Lipoprotein in Aging Subjects with or without Coronary Artery Disease. Clinics, 66, 1543-1548.

[23]   Syvanne, M., Ahola, M., Lahdenpera, S., Kahri, J., Kuusi, T., Virtanen, K.S. and Taskinen, M.R. (1995) High Density Lipoprotein Subfractions in Non-Insulin-Dependent Diabetes Mellitus and Coronary Artery Disease. Journal of Lipid Research, 36, 573-582.

[24]   Pascot, A., Lemieux, I., Prud’homme, D., Tremblay, A., Nadeau, A., Couillard, C., Bergeron, J., Lamarche, B. and Despres, J.P. (2001) Reduced HDL Particle Size as an Additional Feature of the Atherogenic Dyslipidemia of Abdominal Obesity. Journal of Lipid Research, 42, 2007-2014.

[25]   Da Luz, P.L., Favarato, D., Faria, J.R., Lemos, P. and Chagas, A.C.P. (2008) High Ratio of Triglycerides to HDL Cholesterol Predicts Extensive Coronary Disease. Clinics, 63, 427-432.

[26]   Fagerberg, B., Hulthe, J., Bokemark, L. and Wikstrand, J. (2001) Low-Density Lipoprotein Particle Size, Insulin Resistence, and Proinsulin in Population Sample of 58-Year-Old-Men. Metabolism, 50, 120-124.

[27]   Tchernof, A., Lamarche, B., Prud’homme, D., Nadeau, A., Moorjani, S., Labrie, F., Lupien, P.J. and Despres, J.P. (1996) The Dense LDL Phenotype: Association with Plasma Lipoprotein Levels, Visceral Obesity, and Hyperinsulinemia in Men. Diabetes Care, 19, 629-637.

[28]   Jeppesen, J., Hein, H.O., Suadican, P. and Gyntelberg, F. (2001) Low Triglycerides-High High-Density Lipoprotein Cholesterol and Risk of Ischemic Heart Disease. JAMA Internal Medicine, 161, 361-366.

[29]   Vieira, E.A., Carvalho, W.A., Aras, R., Couto, F.D. and Couto, R.D. (2011) Triglycerides/HDL-C Ratio and High Sensible C-Reactive Protein to the Evaluation of Cardiovascular Risk. Jornal Brasileiro de Patologia e Medicina Laboratorial, 47, 113-118.

[30]   Walldius, G. and Jungner, I. (2004) Apolipoprotein B and Apolipoprtein A-I: Risk Indicators of Coronary Heart Disease and Targets for Lipid-Modifying Therapy. Journal of Internal Medicine, 255, 188-205.

[31]   Stanojevic, N.B., Ivanovic, Z.J., Kalimanovska, V.S., Spasic, S. and Ostric, D.K. (2007) Lipid and Inflammatory Markers for the Prediction of Coronary Artery Disease: A Multi-Marker Approach. Clinical Biochemistry, 40, 1000-1006.