[1] Kalman, R. (1960) A New Approach to Liner Filtering and Prediction Problems. Journal of Basic Engineering, 82, 35-45.
[2] Kalman, R. and Bucy, R. (1961) New Results in Liner Filtering and Prediction Theory. Transactions of the ASME-Journal of Basic Engineering, 83, 95-108. http://dx.doi.org/10.1115/1.3658902
[3] Krasovskii, N. (1968) Theory of Motion Control. Nauka, Moscow.
[4] Kurzhanskii, A. (1977) Control and Observation under Uncertainties. Nauka, Moscow.
[5] Kirichenko, N. and Nakonechnyi, O. (1977) A Minimax Approach to Recurrent Estimation of the States of Linear Dynamical Systems. Kibernetika, 4, 52-55.
[6] Nakonechnyi, O. (1979) Minimax Estimates in Systems with Distributed Parameters. Preprint 79, Acad. Sci. USSR, Inst. Cybernetics, Kyiv, 55 p.
[7] Kuntsevich, V. (2005) Accuracy of Construction of Approximating Models under Bounded Measurement Noises. Automation and Remote Control, 66, 791-798. http://dx.doi.org/10.1007/s10513-005-0123-0
[8] Kurzhanski, A. and Valyi, I. (1997) Ellipsoidal Calculus for Estimation and Control. Birkhauser Verlag, Basel.
http://dx.doi.org/10.1007/978-1-4612-0277-6
[9] Nakonechnyi, O., Podlipenko, Y. and Shestopalov, Y. (2009) Estimation of Parameters of Boundary Value Problems for Linear Ordinary Differential Equations with Uncertain Data. arXiv:0912.2872v1, 1-72.
[10] Podlipenko, Y. (2005) Minimax Estimation of Right-Hand Sides of Noetherian Equations in a Hilbert Space under Uncertainty Conditions. Reports of the National Academy of Sciences of Ukraine, 12, 36-44.
[11] Basar, T. and Bernhard, P. (1991) H-Optimal Control and Related Minimax Design Problems. Birkhauser, Basel.
[12] Fedoryuk, M. (1985) Ordinary Differential Equations. Nauka, Moscow.
[13] Naimark, M. (1969) Linear Differential Operators. Nauka, Moscow.
[14] Krein, S. (1971) Linear Equations in the Banach Space. Nauka, Moscow.
[15] Atkinson, F. (1964) Discrete and Coninuous Boundary Value Problems. Academic Press, New York.
[16] Hutson, V., Pym, J. and Cloud, M. (2005) Applications of Functional Analysis and Operator Theory. Vol. 200, 2nd Edition, Mathematics in Science and Engineering, Elsevier Science, Amsterdam.
[17] Lions, J. (1968) Controle optimal de systémes gouvernés par des équations aux dérivées partielles. Dunod, Paris.