OJCM  Vol.4 No.2 , April 2014
Laser Induced Changes of the Raman Spectra of Pristine and Poly(tert-Butyl Acrylate) Functionalized Carbon Nanotubes
Abstract: Pristine and poly(tert-butyl acrylate) (PTBA) functionalized carbon nanotubes are continuously exposed to 2.41 eV laser irradiation while collecting Raman spectra. The loss of the intensity of the radial breathing modes (RBMs) of small metallic PTBA functionalized nanotubes is less than that of pristine nanotubes. A reduction of the intensity of the G? band of pristine SWNTs occurs such that the overall shape of the G band evolves to resemble that of the PTBA functionalized sample. Complementing the measurement of the ratio of intensities of the D and G bands, the laser-in- duced spectral changes provide another way to determine the sidewall functionalization of carbon nanotubes. The laser-induced changes of the G and RBM bands are consistent with the greater sidewall reactivity of small metallic nanotubes toward functionalization with PTBA and reaction with photosensitized oxygen.
Cite this paper: Yu, D. , Blackledge, C. and Wicksted, J. (2014) Laser Induced Changes of the Raman Spectra of Pristine and Poly(tert-Butyl Acrylate) Functionalized Carbon Nanotubes. Open Journal of Composite Materials, 4, 122-130. doi: 10.4236/ojcm.2014.42014.

[1]   Huang, H., Maruyama, R., Noda, K., Kajiura, H. and Kadono, K. (2006) Preferential Destruction of Metallic Single-Walled Carbon Nanotubes by Laser Irradiation. The Journal of Physical Chemistry B, 110, 7316-7320.

[2]   Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H.W., Kittrell, C., Hauge, R.H., Tour, J.M. and Smalley, R.E. (2003) Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization. Science, 301, 1519-1522.

[3]   Banerjee, S., Hemraj-Benny, T. and Wong, S.S. (2005) Routes Towards Separating Metallic and Semiconducting Nanotubes. Journal of Nanoscience and Nanotechnology, 5, 841-855.

[4]   Tasis, D., Tagmatarchis, N., Bianco, A. and Prato, M. (2006) Chemistry of Carbon Nanotubes. Chemical Reviews, 106, 1105-1136.

[5]   Miyata, Y., Maniwa, Y. and Kataura, H. (2006) Selective Oxidation of Semiconducting Single-Wall Carbon Nanotubes by Hydrogen Peroxide. The Journal of Physical Chemistry B, 110, 25-29.

[6]   Qin, S., Qin, D., Ford, W.T., Herrera, J.E. and Resasco Daniel, E. (2004) Grafting of Poly(4-vinylpyridine) to Single-Walled Carbon Nanotubes and Assembly of Multilayer Films. Macromolecules, 37, 9963-9967.

[7]   Jorio, A., Souza Filho, A.G., Dresselhaus, G., Dresselhaus, M.S., Swan, A.K., ünlü, M.S., Goldberg, B.B., Pimenta, M.A., Hafner, J.H., Lieber, C.M. and Saito, R. (2002) G-Band Resonant Raman Study of 62 Isolated Single-Wall Carbon. Physical Review B, 65, 155412.

[8]   Thomsen, C. and Reich, S. (2000) Double Resonant Raman Scattering in Graphite. Physical Review Letters, 85, 5214-5217.

[9]   Osswald, S., Flahaut, E. and Gogotsi, Y. (2006) In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes. Chemistry of Materials, 18, 1525-1533.

[10]   Bokova, S.N., Konov, V.I., Obraztsova, E.D., Osadchii, A.V., Pozharov, A.S. and Terekhov, S.V. (2003) Laser-Induced Effects in Raman Spectra of Single-Wall Carbon Nanotubes. Quantum Electronics, 33, 645.

[11]   Corio, P., Santos, P.S., Pimenta, M.A. and Dresselhaus, M.S. (2002) Evolution of the Molecular Structure of Metallic and Semiconducting Carbon Nanotubes under Laser Irradiation. Chemical Physics Letters, 360, 557-564.

[12]   Burghard, M. (2005) Electronic and Vibrational Properties of Chemically Modified Single-Wall Carbon Nanotubes. Surface Science Reports, 58, 1-109.

[13]   Savage, T., Bhattacharya, S., Sadanadan, B., Gaillard, J., Tritt, T.M., Sun, Y.P., Wu, Y., Nayak, S., Car, R., Marzari, N., Ajayan, P.M. and Rao, A.M. (2003) Photoinduced Oxidation of Carbon Nanotubes. Journal of Physics: Condensed Matter, 15, 5915-5921.

[14]   Dukovic, G., White, B.E., Zhou, Z., Wang, F., Jockusch, S., Steigerwald, M.L., Heinz, T.F., Friesner, R.A., Turro, N.J. and Brus, L.E. (2004) Reversible Surface Oxidation and Efficient Luminescence Quenching in Semiconductor Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 126, 15269-15276.

[15]   Menna, E., Negra, F.D. and Fontana, M.D. (2003) Selectivity of Chemical Oxidation Attack of Single-Wall Carbon Nanotubes in Solution. Physical Review B, 68, 193412.

[16]   Yang, C.-M., Park, J.S., An, K.H., Lim, S.C., Seo, K., Kim, B., Park, K.A., Han, S., Park, C.Y. and Lee, Y.H. (2005) Selective Removal of Metallic Single-Walled Carbon Nanotubes with Small Diameters by Using Nitric and Sulfuric Acids. Journal of Physical Chemistry B, 109, 19242-19248.

[17]   Berber, S., Kwon, Y.-K. and TomÃ!nek, D. (2000) Unusually High Thermal Conductivity of Carbon Nanotubes. Physical Review Letters, 84, 4613-4616.

[18]   Jiang, C.Y., Kempa, K., Zhao, J.L., Schlecht, U., Kolb, U., Basche, T., Burghard, M. and Mews, A. (2002) Strong Enhancement of the Breit-Wigner-Fano Raman Line in Carbon Nanotube Bundles Caused by Plasmon Band Formation. Physical Review B, 66, 161404.

[19]   O’Connell, M.J., Sivaram, S. and Doorn, S.K. (2004) Near-Infrared Resonance Raman Excitation Profile Studies of Single-Walled Carbon Nanotube Intertube Interactions: A Direct Comparison of Bundled and Individually Dispersed HiPco Nanotubes. Physical Review B, 69, 235415.

[20]   Saito, R., Jorio, A., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G. and Dresselhaus, M.S. (2001) Chirality-Dependent G-Band Raman Intensity of Carbon Nanotubes. Physical Review B, 6408, 085312.