AM  Vol.2 No.4 , April 2011
An Innovative Solutions for the Generalized FitzHugh-Nagumo Equation by Using the Generalized (G'/G)-Expansion Method
ABSTRACT
In this paper, the generalized (G'/G)-expansion method is used for construct an innovative explicit traveling wave solutions involving parameter of the generalized FitzHugh-Nagumo equation , for some special parameter where satisfies a second order linear differential equation , , where and are functions of .

Cite this paper
nullS. Elagan, M. Sayed and Y. Hamed, "An Innovative Solutions for the Generalized FitzHugh-Nagumo Equation by Using the Generalized (G'/G)-Expansion Method," Applied Mathematics, Vol. 2 No. 4, 2011, pp. 470-474. doi: 10.4236/am.2011.24060.
References
[1]   A. K. Ray and J. K. Bhattacharjee, “Standing and Travelling Waves in the Shallow-Water Circular Hydraulic Jump,” Physics Letters A, Vol. 371, No. 3, 2007, pp. 241-248.

[2]   I. E. Inan and D. Kaya, “Exact Solutions of Some Nonlinear Partial Differential Equations,” Physica A, Vol. 381, No. 1, 2007, pp. 104-115. doi:10.1016/j.physa.2007.04.011

[3]   V. A. Osipov, “An Exact Solution for a Fractional Disclination Vortex,” Physics Letters A, Vol. 193, No. 1, 1994, pp. 97-101. doi:10.1016/0375-9601(94)00664-4

[4]   P. M. Jordan and A. A. Puri, “Note on Traveling Wave Solutions for a Class of Nonlinear Viscoelastic Media,” Physics Letters A, Vol. 335, No. 2-3, 2005, pp. 150-156. doi:10.1016/j.physleta.2004.11.058

[5]   Z. Y. Yan, “Generalized Method and Its Application in the Higher-Order Nonlinear Schrodinger Equation in Nonlinear Optical Fibres,” Chaos Solitons and Fractals, Vol. 16, No. 5, 2003, pp. 759-766. doi:10.1016/S0960-0779(02)00435-6

[6]   K. Nakkeeran, “Optical Solitons in Erbium Doped Fibers with Higher Order Effects,” Physics Letters A, Vol. 275, No. 5-6, 2000, pp. 415-418. doi:10.1016/S0375-9601(00)00600-9

[7]   R. Hirota, “Exact Solution of the Korteweg-De Vries Equation for Multiple Collisions of Solitons,” Physical Review Letters, Vol. 27, No. 18, 1971, pp. 1192-1194. doi:10.1103/PhysRevLett.27.1192

[8]   M. R. Miurs, “Backlund Transformation,” Springer, Berlin, 1978.

[9]   J. Weiss, M. Tabor and G. Carnevale, “The Painlevé Property for Partial Differential Equations,” Journal of Mathematical Physics, Vol. 24, No. 3, 1983, pp. 522-526. doi:10.1063/1.525721

[10]   C. T. Yan, “A Simple Transformation for Nonlinear Waves,” Physics Letters A, Vol. 224, No. 1-2, 1996, pp. 77-84. doi:10.1016/S0375-9601(96)00770-0

[11]   M. L. Wang, “Exact Solution for a Compound Kdv- Burgers Equations,” Physics Letters A, Vol. 213, No. 5-6, 1996, pp. 279-287. doi:10.1016/0375-9601(96)00103-X

[12]   M. El-Shahed, “Application of He’s Homotopy Perturbation Method to Volterra’s Integro-Differential Equation,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 6, No. 2, 2005, pp. 163-168.

[13]   J. H. He, “Homotopy Perturbation Method for Bifurcation of Nonlinear Problems,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 6, No. 2, 2005, pp. 207-208.

[14]   J. H. He, “Application of Homotopy Perturbation Method to Nonlinear Wave Equations,” Chaos Solitons and Fractals, Vol. 26, No. 3, 2005, pp. 695-700. doi:10.1016/j.chaos.2005.03.006

[15]   J. H. He, “Variational Iteration Method—A Kind of Nonlinear Analytical Technique: Some Examples,” International Journal of Non-Linear Mechanics, Vol. 34, No. 4, 1999, pp. 699-708. doi:10.1016/S0020-7462(98)00048-1

[16]   J. H. He, “Variational Iteration Method for Autonomous Ordinary Differential Systems,” Applied Mathematics and Computation, Vol. 114, No. 2-3, 2000, pp. 115-123. doi:10.1016/S0096-3003(99)00104-6

[17]   L. Xu, J. H. He and A. M. Wazwaz, “Variational Iteration Method-Reality, Potential, and Challenges,” Journal of Computational and Applied Mathematics, Vol. 207, No. 1, 2007, pp. 1-2. doi:10.1016/j.cam.2006.07.021

[18]   E. Yusufoglu, “Variational Iteration Method for Construction of Some Compact and Noncompact Structures of Klein-Gordon Equations,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 8, No. 2, 2007, pp. 153-158.

[19]   J. H. He, “Some Asymptotic Methods for Strongly Nonlinear Equations,” International Journal of Modern Physics B, Vol. 20, No. 10, 2006, pp. 1141-1199. doi:10.1142/S0217979206033796

[20]   J. H. He, “Non-Perturbative Methods for Strongly Nonlinear Problems,” Dissertation, de-Verlag im Internet GmbH, Berlin, 2006.

[21]   T. A. Abassy, M. A. El-Tawil and H. K. Saleh, “The Solution of KdV and MkdV Equations Using Adomian Pade Approximation,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 5, No. 4, 2004, pp. 327-340.

[22]   W. Malfliet, “Solitary Wave Solutions of Nonlinear Wave Equations,” American Journal of Physics, Vol. 60, No. 7, 1992, pp. 650-654. doi:10.1119/1.17120

[23]   E. G. Fan, “Extended Tanh-Function Method and Its Applications to Nonlinear Equations,” Physics Letters A, Vol. 227, No. 4-5, 2000, pp. 212-218. doi:10.1016/S0375-9601(00)00725-8

[24]   Z. S. Lü and H. Q. Zhang, “On a New Modified Extended Tanh-Function Method,” Communications in Theoretical Physics, Vol. 39, No. 4, 2003, pp. 405-408.

[25]   S. Zhang and T. C. Xia, “Symbolic Computation and New Families of Exact Non-Travelling Wave Solutions of (3 + 1)-Dimensional Kadomstev-Petviashvili Equation,” Applied Mathematics and Computation, Vol. 181, No. 1, 2006, pp. 319-331. doi:10.1016/j.amc.2006.01.033

[26]   S. Zhang, “Symbolic Computation and New Families of Exact Non-Travelling Wave Solutions of (2 + 1)-Dimensional Konopelchenko-Dubrovsky Equations,” Chaos Solitons and Fractals, Vol. 31, No. 4, 2007, pp. 951-959. doi:10.1016/j.chaos.2005.10.064

[27]   E. G. Fan, “Travelling Wave Solutions in Terms of Special Functions for Nonlinear Coupled Evolution Systems,” Physics Letters A, Vol. 300, No. 2-3, 2002, pp. 243-249. doi:10.1016/S0375-9601(02)00776-4

[28]   E. Yomba, “The Modified Extended Fan Sub-Equation Method and Its Application to the (2 + 1)-Dimensional Broer-Kaup-Kupershmidt Equation,” Chaos Solitons and Fractals, Vol. 27, No. 1, 2006, pp. 187-196. doi:10.1016/j.chaos.2005.03.021

[29]   S. Zhang and T. C. Xia, “A Further Improved Extended Fan Sub-Equation Method and Its Application to the (3 + 1)-Dimensional Kadomstev-Petviashvili Equation,” Physics Letters A, Vol. 356, No. 2, 2006, pp. 119-123. doi:10.1016/j.physleta.2006.03.027

[30]   S. Zhang and T. C. Xia, “Further Improved Extended Fan Sub-equation Method and New Exact Solutions of the (2 + 1)-Dimensional Broer-Kaup-Kupershmidt Equations,” Applied Mathematics and Computation, Vol. 182, No. 2, 2006, pp. 1651-1660. doi:10.1016/j.amc.2006.06.004

[31]   S. K. Liu, Z. T. Fu, S. D. Liu and Q. Zhao, “Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations,” Physics Letters A, Vol. 289, No. 1-2, 2001, pp. 69-74. doi:10.1016/S0375-9601(01)00580-1

[32]   Z. T. Fu, S. K. Liu, S. D. Liu and Q. Zhao, “New Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations,” Physics Letters A, Vol. 290, No. 1-2, 2001, pp. 72-76. doi:10.1016/S0375-9601(01)00644-2

[33]   E. J. Parkes, B. R. Duffy and P. C. Abbott, “The Jacobi Elliptic-Function Method for Finding Periodic-Wave Solutions to Nonlinear Evolution Equations,” Physics Letters A, Vol. 295, No. 5-6, 2002, pp. 280-286. doi:10.1016/S0375-9601(02)00180-9

[34]   Y. B. Zhou, M. L. Wang and Y. M. Wang, “Periodic Wave Solutions to A Coupled KdV Equations with Variable Coefficients,” Physics Letters A, Vol. 308, No. 1, 2003, pp. 31-36. doi:10.1016/S0375-9601(02)01775-9

[35]   D. S. Wang and H. Q. Zhang, “Further Improved F-Expansion Method and New Exact Solutions of Konopelchenko-Dubrovsky Equation,” Chaos Solitons and Fractals, Vol. 25, No. 3, 2005, pp. 601-610. doi:10.1016/j.chaos.2004.11.026

[36]   S. Zhang and T. C. Xia, “A Generalized F-Expansion Method and New Exact Solutions of Konopelchenko-Dubrovsky Equations,” Applied Mathematics and Computation, Vol. 183, No. 2, 2006, pp. 1190-1200. doi:10.1016/j.amc.2006.06.043

[37]   Sirendaoreji and J. Sun, “Auxiliary Equation Method for Solving Nonlinear Partial Differential Equations,” Physics Letters A, Vol. 309, No. 5-6, 2003, pp. 387-396. doi:10.1016/S0375-9601(03)00196-8

[38]   S. Zhang and T. C. Xia, “A Generalized Auxiliary Equation Method and Its Application to (2 + 1)-Dimensional Asymmetric Nizhnik-Novikov-Vesselov Equations,” Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 2, 2007, pp. 227-248. doi:10.1088/1751-8113/40/2/003

[39]   S. Zhang and T. C. Xia, “A Generalized New Auxiliary Equation Method and Its Applications to Nonlinear Partial Differential Equations,” Physics Letters A, Vol. 363, No. 5-6, 2007, pp. 356-360. doi:10.1016/j.physleta.2006.11.035

[40]   S. Zhang, “A Generalized Auxiliary Equation Method and Its Application to the (2+1)-Dimensional KdV Equations,” Applied Mathematics and Computation, Vol. 188, No. 1, 2007, pp. 1-6. doi:10.1016/j.amc.2006.09.068

[41]   M. L. Wang, X. Z. Li and J. L. Zhang, “The -Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics,” Physics Letters A, Vol. 372, No. 4, 2008, pp. 417-423. doi:10.1016/j.physleta.2007.07.051

[42]   S. Zhang, J. L. Tong and W. Wang, “A Generalized -Expansion Method for the MkdV Equation with Variable Coefficients,” Physics Letters A, Vol. 372, No. 13, 2008, pp. 2254-2257. doi:10.1016/j.physleta.2007.11.026

 
 
Top