Back
 AJAC  Vol.5 No.5 , April 2014
Statistical Studies of the Physicochemical Analytic Results of a Series of Synthetic Calcium Hydroxyapatite Containing Carbonate and Sodium
Abstract: The objective of this study is to present a simple method of statistical calculation that allowed us to determine the relationship between the different data obtained from the characterization of the synthetic carbonated apatites containing sodium, in order to find the fundamental substitution mechanism(s) for incorporation of Na+ and CO32- and to establish the general formula. For that, a series of hydroxyapatites containing carbonate and sodium (Na-CO3HAps) has been obtained by the precipitation method. All the compounds were characterized by infrared spectra (IR), powder X-ray diffraction (PXRD) and elemental analysis. The statistical treatment of the experiment result allows us to determine the relationship between one variable and the change in the other and to found the fundamental substitution mechanism(s) for incorporation of Na+ and CO32- . Analysis of variance (ANOVA) allows us to test the models proposed.
Cite this paper: Hadj Yahia, F. and Khattech, I. (2014) Statistical Studies of the Physicochemical Analytic Results of a Series of Synthetic Calcium Hydroxyapatite Containing Carbonate and Sodium. American Journal of Analytical Chemistry, 5, 343-357. doi: 10.4236/ajac.2014.55042.
References

[1]   LeGeros, R.Z. (1981) Apatites in Biological Systems. Progress in Crystal Growth and Characterization of Materials, 4, 1-45.
http://dx.doi.org/10.1016/0146-3535(81)90046-0

[2]   Nagy, G., Lorand, T., Patonai, Z., Montsko, I., Bajnoczky, G., Marcsik, A. and Marka, L. (2008) Analysis of Pathological and Non-Pathological Human Skeletal Remains by FT-IR Spectroscopy. Forensic Science International, 175, 55-60.
http://dx.doi.org/10.1016/j.forsciint.2007.05.008

[3]   Follmi, K.B. (1996) The Phosphorus Cycle, Phosphogenesis and Marine Phosphate-Rich Deposits. Earth-Science Reviews, 40, 55-124.
http://dx.doi.org/10.1016/0012-8252(95)00049-6

[4]   Frank-Kamenetskaya, O., Kol’tsov, A., Kuz’mina, M., Zorina, M. and Poritskaya, L. (2011) Ion Substitutions and Non-Stoichiometry of Carbonated Apatite-(CaOH)) Synthesized by Precipitation and Hydrothermal Methods. Journal of Molecular Structure, 992, 9-18.
http://dx.doi.org/10.1016/j.molstruc.2011.02.013

[5]   Larson, P.R., Madden, A.S. and Tas, A.C. (2013) Non-Stirred Synthesis of Na- and Mg-Doped, Carbonated Apatitic Calcium Phosphate. Ceramics International, 39, 1485-1493.
http://dx.doi.org/10.1016/j.ceramint.2012.07.095

[6]   Lafon, J.P., Champion, E. and Bernache-Assollant, D. (2008) Processing of AB-Type Carbonated Hydroxyapatite Ca10-x(PO4)6-x(CO3)x(OH)2-x-2y(CO3)y Ceramics with Controlled Composition. Journal of the European Ceramic Society, 28, 139-147.
http://dx.doi.org/10.1016/j.jeurceramsoc.2007.06.009

[7]   Apfelbaum, F., Diab, H., Mayer, I. and Featherstone, J.D.B. (1992) An FTIR Study of Carbonate in Synthetic Apatites. Journal of Inorganic Biochemistry, 45, 4277-4282.
http://dx.doi.org/10.1016/0162-0134(92)84016-G

[8]   Zendah, H., Khattech, I. and Jemal, M. (2013) Thermochemical and Kinetic Studies of The Acid Attack of “B” Type Carbonate Fluorapatites at Different Temperatures 25°C - 55°C. Thermochimica Acta, 565, 46-51.
http://dx.doi.org/10.1016/j.tca.2013.04.033

[9]   Yao, F. and LeGeros, R.Z. (2010) Carbonate and Fluoride Incorporation in Synthetic Apatites: Comparative Effect on Physico-Chemical Properties and in Vitro Bioactivity in Fetal Bovine Serum. Materials Science and Engineering C, 30, 3423-3430.
http://dx.doi.org/10.1016/j.msec.2009.12.011

[10]   Schramm, D.U. and Rossi, A.M (2000) Electron Spin Resonance (ESR) Studies of CO2-Radicals in Irradiated A and B-Type Carbonate-containing Apatites. Applied Radiation and Isotopes, 52, 1085-1091.
http://dx.doi.org/10.1016/S0969-8043(00)00046-4

[11]   Fleet, M.E. and Liu, X. (2007) Coupled Substitution of Type A and B Carbonate in Sodium-Bearing Apatite. Biomaterials, 28, 916-926.
http://dx.doi.org/10.1016/j.biomaterials.2006.11.003

[12]   Bel Hadj Yahia, F. and Jemal, M. (2010) Structural Analysis and Thermochemistry of B-Type Carbonate Apatites. Thermochimica Acta, 505, 22-32.
http://dx.doi.org/10.1016/j.tca.2010.03.017

[13]   El Feki, H. (1990) Synthèse et Etude de la Décomposition Thermique d’Hydroxy et de Fluorapatites Carbonatées Phosphocalciques Sodées. Ph.D. Dissertation, Tunis II University, Tunis.

[14]   Elliott, J.C. (1994) Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Elsevier, Amsterdam.

[15]   Labarthe, J.C., Bonel, G. and Montel, G. (1973) Sur la Structure et les propriétés des Apatites Carbonatés de type B Phosphocalciques. Annali di Chimica, 8, 289-301.

[16]   Vignoles, M., Labarthe, J.C. and Vignoles, C. (1978) Contribution à L’étude Structurale des Apatites Carbonatées de type B. Colloques Internationaux du CNRS, 230, 117-125.

[17]   Vignoles, M., Bonel, G., Labarthe, J.C. and Bacquet, G. (1982) Etude Physico Chimique des Apatites Carbonatées Phosphocalciques Semblables à la Francolite. Bull. Minéral., 105, 307-311.

[18]   Khattech, I. and Jemal, M. (1985) Etude de la Décomposition Thermique de Fluorapatites Carbonatées. Thermochimica Acta, 95, 119-128.
http://dx.doi.org/10.1016/0040-6031(85)80039-3

[19]   Khattech, I. and Jemal, M. (1987) Décomposition Thermique de Fluorapatites Carbonatées de Type B “Inverses”. Thermochimica Acta, 118, 267-275.
http://dx.doi.org/10.1016/0040-6031(87)80090-4

[20]   El Feki, H., Khattech, I., Jemal, M. and Rey, C. (1994) Decomposition thermique d’hydroxyapatites carbonatées sodées Thermal decomposition of carbonated hydroxyapatites containing sodium ions. Thermochimica Acta, 237, 99-110.
http://dx.doi.org/10.1016/0040-6031(94)85188-3

[21]   De Maeyer, E.A.P. and Verbeeck, R.M.H. (1993) Possible Substitution Mechanisms for Sodium and Carbonate in Calciumhydroxyapatite. Bulletin des Sociétés Chimiques Belges, 102, 601-609.
http://dx.doi.org/10.1002/bscb.19931020907

[22]   Charlot, G. (1966) Les Méthodes de la Chimie Analytique. Masson, Paris.

[23]   De Maeyer, E.A.P., Verbeeck, R.M.H. and Nassens, D.E. (1994) Effect of Heating on the Constitution of Na+- and Containing Apatites Obtained by Hydrolysis of Monetite. Inorganic Chemistry, 33, 5999-6006.
http://dx.doi.org/10.1021/ic00104a006

[24]   De Maeyer, E.A.P., Verbeeck, R.M.H. and Nassens, D.E. (1994) Optimalization of the Preparation of Na+- and Containing Hydroxyapatites by the Hydrolysis of Monetite. Journal of Crystal Growth, 135, 539-547.
http://dx.doi.org/10.1016/0022-0248(94)90145-7

[25]   De Maeyer, E.A.P., Verbeeck, R.M.H. and Pieters, I.Y. (1996) Influence of the Solution Composition on the Stoichi- ometry of Na+- and of K+-Containing Carbonated Apatites Obtained by The Hydrolysis of Monetite. Journal of Crystal Growth, 169, 539-547.
http://dx.doi.org/10.1016/S0022-0248(96)00424-1

[26]   Snedecor, G.W. and Cochran, W.G. (1980) Statistical Methods. 7th Edition, The Iowa State University Press, Ames.

[27]   Borcard, D. (2009) Régression Multiple. Université de Montréal.
http://biol09.biol.umontreal.ca/BIO2042/Regr_mult.pdf

[28]   El Feki, H., Savariault, J.M., Ben Salah, A. and Jemal, M. (2000) Sodium and Carbonate Distribution in Substituted Calcium Hydroxyapatite. Solid State Sciences, 2, 577-586.
http://dx.doi.org/10.1016/S1293-2558(00)01059-1

 
 
Top