Pointwise Approximation Theorems for Combinations of Bernstein Polynomials with Inner Singularities

References

[1] D. S. Yu, “Weighted Approximation of Functions with Singularities by Combinations of Bernstein Operators,” Journal of Applied Mathematics and Computation, Vol. 206, No. 2, 2008, pp. 906-918.

[2] Z. Ditzian, “A Global Inverse Theorem for Combinations of Bernstein Polynomials,” Journal of Approximation Theory, Vol. 26, No. 3, 1979, pp. 277-292. doi:10.1016/0021-9045(79)90065-0

[3] Z. Ditzian and V. Totik, “Moduli of Smoothness,” Springer-Verlag, Berlin, 1987.

[4] M. Felten, “Direct and Inverse Estimates for Bernstein Polynomials,” Constructive Approximation, Vol. 14, No. 3, 1989, pp. 459-468. doi:10.1007/s003659900084

[5] S. S. Guo, C. X. Li and X. W. Liu, “Pointwise Approximation for Linear Combinations of Bernstein Operators,” Journal of Approximation Theory, Vol. 107, No. 1, 2000, pp. 109-120. doi:10.1006/jath.2000.3504

[6] G. G. Lorentz, “Bernstein Polynomial,” University of Toronto Press, Toronto, 1953.

[7] J. J. Zhang and Z. B. Xu, “Direct and Inverse Approximation Theorems with Jacobi Weight for Combinations and Higher Derivatives of Baskakov Operators,” Journal of Systems Science and Mathematical Sciences, In Chinese, Vol. 28, No. 1, 2008, pp. 30-39.

[8] D. D. Vechhia, G. Mastroianni and J. Szabados, “Weighted Approximation of Functions with Endpoint and Inner Singularities by Bernstein Operators,” Acta Mathe- matica Hungarica, Vol. 103, No. 1-2, 2004, pp. 19-41. doi:10.1023/B:AMHU.0000028234.44474.fe