TEL  Vol.4 No.3 , April 2014
The Generalized wH Value
Author(s) Tobias Hiller*
ABSTRACT

In this note, we generalize the wHSh value [1] [2] for CO values.


Cite this paper
Hiller, T. (2014) The Generalized wH Value. Theoretical Economics Letters, 4, 247-253. doi: 10.4236/tel.2014.43034.
References
[1]   Casajus, A., Hiller, T. and Wiese, H. (2009) Hierarchie und Entlohnung. Zeitschrift für Betriebswirtschaft, 79, 929-954. http://dx.doi.org/10.1007/s11573-009-0271-8

[2]   Casajus, A., Hiller, T. and Wiese, H. (2012) Hierarchy and Wages. Working Paper.

[3]   Myerson, R.B. (1977) Graphs and Cooperation in Games. Mathematics of Operations Research, 2, 225-229.
http://dx.doi.org/10.1287/moor.2.3.225

[4]   Borm, P., Owen, G. and Tijs, S. (1992) On the Position Value for Communication Situations. SIAM Journal on Discrete Mathematics, 5, 305-320. http://dx.doi.org/10.1137/0405023

[5]   Herings, P.J.J., van der Laan, G. and Talman, D. (2008) The Average Tree Solution for Cycle-Free Graph Games. Games and Economic Behavior, 62, 77-92. http://dx.doi.org/10.1016/j.geb.2007.03.007

[6]   Kalai, E. and Samet, D. (1987) On Weighted Shapley Values. International Journal of Game Theory, 16, 205-222.
http://dx.doi.org/10.1007/BF01756292

[7]   Winter, E. (1989) A Value for Cooperative Games with Levels Structure of Cooperation. International Journal of Game Theory, 18, 227-240. http://dx.doi.org/10.1016/S0167-2681(01)00156-1

[8]   Owen, G. (1977) Values of Games with a Priori Unions. In: Henn, R. and Moeschli, O. Eds., Essays in Mathematical Economics & Game Theory, Springer Verlag, Berlin et al., 76-88.

[9]   Lazear, E.P. and Rosen, S. (1981) Rank-Order Tournaments as Optimum Labor Contracts. Journal of Political Economy, 89, 841-864. www.jstor.org/stable/1830810 http://dx.doi.org/10.1086/261010

[10]   Carmichael, L. (1983) Firm-Specific Human Capital and Promotion Ladders. Bell Journal of Economics, 14, 251-258.www.jstor.org/stable/3003551 http://dx.doi.org/10.2307/3003551

[11]   Prendergast, C. (1993) The Role of Promotion in Inducing Specific Human Capital Acquisition. Quarterly Journal of Economics, 108, 523-534.www.jstor.org/stable/2118343

[12]   Radner, R. (1992) Hierarchy: The Economics of Managing. Journal of Economic Literature, 30, 1382-1415.
www.jstor.org/stable/2728063

[13]   Meagher, K.J. (2001) The Impact of Hierarchies on Wages. Journal of Economic Behavior and Organization, 45, 441-458. http://dx.doi.org/10.1016/S0167-2681(01)00156-1

[14]   van den Brink, R. (2008) Vertical Wage Differences in Hierarchically Structured Firms. Social Choice and Welfare, 30, 225-243. http://dx.doi.org/10.1007/s00355-007-0230-7

[15]   Gilles, R.P., Owen, G. and van den Brink, R. (1992) Games with Permission Structures: The Conjunctive Approach. International Journal of Game Theory, 20, 277-293. http://dx.doi.org/10.1007/BF01253782

[16]   van den Brink, R. and Gilles, R.P. (1996) Axiomatizations of the Conjunctive Permission Value for Games with Permission Structure. Games and Economic Behavior, 12, 113-126.
http://dx.doi.org/10.1006/game.1996.0008

[17]   Shapley, L.S. (1953) A Value for N-Person Games. In: Kuhn, H.W. and Tucker, A.W., Eds., Contributions to the Theory of Games, Vol. 2, Princeton, 307-317.

[18]   Hiller, T. (2011) A Note on Chi-Values. International Review of Economics, 58, 433-438.
http://dx.doi.org/10.1007/s12232-011-0125-x

[19]   van den Brink, R. (1997) An Axiomatization of the Disjunctive Permission Value for Games with a Permission Structure. International Journal of Game Theory, 26, 27-43.
http://dx.doi.org/10.1007/BF01262510

[20]   Bollobás, B. (2002) Modern Graph Theory. 3rd Edition, NewYork, Heidelberg et al.
http://dx.doi.org/10.1016/S0167-2681(01)00156-1

[21]   Radner, R. (1992) Hierarchy: The Economics of Managing. Journal of Economic Literature, 30, 1382-1415.
www.jstor.org/stable/2728063

[22]   Meagher, K.J. (2001) The Impact of Hierarchies on Wages. Journal of Economic Behavior and Organization, 45, 441-458.

[23]   Slikker, M. and van den Nouweland, A. (2001) Social and Economic Networks in Cooperative Game Theory, Boston et al.

 
 
Top