[1] Lloyd, J. (1987) Foundations of Logic Programming. 2nd Edition, Springer-Verlag, Berlin.
[2] Lee, R. (1972) Fuzzy Logic and the Resolution Principle. Journal of the ACM, 19, 119-129. http://dx.doi.org/10.1145/321679.321688
[3] Ishizuka, M. and Kanai, N. (1985) Prolog-ELF Incorporating Fuzzy Logic. Proceedings of the 9th International Joint Conference on Artificial Intelligence, IJCAI’85, Los Angeles, 18-23 August 1985, 701-703.
[4] Li, D. and Liu, D. (1990) A Fuzzy Prolog Database System. John Wiley & Sons, Inc., Hoboken.
[5] Baldwin, J.F., Martin, T.P., and Pilsworth, B.W. (1995) Fril-Fuzzy and Evidential Reasoning in Artificial Intelligence. ohn Wiley & Sons, Inc., Hoboken.
[6] Rodrguez-Artalejo, M. and Romero-Daz, C. (2008) Quantitative Logic Programming Revisited. In: Garrigue, J. and Hermenegildo, M., Eds., Functional and Logic Programming (FLOPS’08), Springer, Berlin, 272-288.
[7] Caballero, R., Rodrguez, M., and Romero, C.A. (2010) A Transformation-Based Implementation for CLP with Qualification and Proximity. CoRR, abs/1009.1976.
[8] Munoz-Hernandez, S., Pablos-Ceruelo, V. and Strass, H. (2011) Rfuzzy: Syntax, Semantics and Implementation Details of a Simple and Expressive Fuzzy Tool over Prolog. Information Sciences, 181, 1951-1970. http://dx.doi.org/10.1016/j.ins.2010.07.033
[9] Medina, J., Ojeda-Aciego, M. and Vojtás, P. (2004) Similarity-Based Unification: A Multi-Adjoint Approach. Fuzzy Sets and Systems, 146, 43-62. http://dx.doi.org/10.1016/j.fss.2003.11.005
[10] Medina, J., Ojeda-Aciego, M. and Vojtas, P. (2001) Multi-Adjoint Logic Programming with Continuous Semantics. Proceedings of Logic Programming and Non-Monotonic Reasoning, LPNMR’01. In: Lecture Notes in Computer Science, Vol. 2173, Springer-Verlag, Berlin, 351-364.
[11] Medina, J., Ojeda-Aciego, M. and Vojtas, P. (2001) A Procedural Semantics for Multi-Adjoint Logic Programing. Progress in Artificial Intelligence, EPIA’01. In: Lecture Notes in Computer Science, Vol. 2258, Springer-Verlag, Berlin, 290-297.
[12] Julián, P., Moreno, G. and Penabad, J. (2009) On the Declarative Semantics of Multi-Adjoint Logic Programs. Proceedings of 10th International Work-Conference on Artificial Neural Networks, IWANN’09. In: Lecture Notes in Computer Science, Vol. 5517, Springer-Verlag, Berlin, 253-260.
[13] Lassez, J.L., Maher, M.J. and Marriott, K. (1988) Unification Revisited. In: Minker, J., Ed., Foundations of Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, 587-625.
[14] Julián, P., Moreno, G. and Penabad, J. (2006) Operational/Interpretive Unfolding of Multi-Adjoint Logic Programs. Journal of Universal Computer Science, 12, 1679-1699.
[15] Julián, P., Moreno, G. and Penabad, J. (2007) Measuring the Interpretive Cost in Fuzzy Logic Computations. Applications of Fuzzy Sets Theory, Proceedings of 7th International Workshop on Fuzzy Logic and Applications, WILF’07. In: Lecture Notes in Computer Science, Vol. 4578, Springer-Verlag, Berlin, 28-36.
[16] Morcillo, P. and Moreno, G. (2009) On Cost Estimations for Executing Fuzzy Logic Programs. Proceedings of the 2009 International Joint Conference on Artificial Intelligence, ICAI’09, Las Vegas, 13-16 July 2009, 217-223.
[17] Morcillo, P. and Moreno, G. (2009) Modeling Interpretive Steps in Fuzzy Logic Computations. Proceedings of the 8th International Workshop on Fuzzy Logic and Applications, WILF’09. In: Lecture Notes in Computer Science, Vol. 5571, Springer-Verlag, Berlin, 44-51.
[18] Julián, P., Moreno, G. and Penabad, J. (2005) On Fuzzy Unfolding. A Multi-Adjoint Approach. Fuzzy Sets and Systems, 154, 16-33. http://dx.doi.org/10.1016/j.fss.2005.03.013
[19] Guerrero, J. and Moreno, G. (2008) Optimizing Fuzzy Logic Programs by Unfolding, Aggregation and Folding. Electronic Notes in Theoretical Computer Science, 219, 19-34.
http://dx.doi.org/10.1016/j.entcs.2008.10.032
[20] Morcillo, P. and Moreno, G. (2008) Programming with Fuzzy Logic Rules by using the FLOPER Tool. Proceedings of the 2nd Rule Representation, Interchange and Reasoning on the Web, International Symposium, RuleML’08. In: Lecture Notes in Computer Science, Vol. 3521, Springer-Verlag, Berlin, 119-126.
[21] Morcillo, P., Moreno, G., Penabad, J. and Vázquez, C. (2010) Modeling Interpretive Steps into the FLOPER Environment. Proceedings of the 2010 International Conference on Artificial Intelligence, ICAI’10, Las Vegas, 12-15 July 2010, 16-22.
[22] Morcillo, P., Moreno, G., Penabad, J. and Vázquez, C. (2010) A Practical Management of Fuzzy Truth Degrees Using FLOPER. Proceedings of 4th International Symposium on Rule Interchange and Applications, RuleML’10. In: Lecture Notes in Computer Science, Vol. 6403, Springer-Verlag, Berlin, 20-34.
[23] Morcillo, P., Moreno, G., Penabad, J. and Vázquez, C. (2011) Declarative Traces into Fuzzy Computed Answers. Proceedings of 5th International Symposium on Rules: Research Based, Industry Focused, RuleML’11. In: Lecture Notes in Computer Science, Vol. 6826, Springer-Verlag, Berlin, 170-185.
[24] Morcillo, P.J., Moreno, G., Penabad, J. and Vázquez, C. (2012) Dedekind-Macneille Completion and Cartesian Product of Multi-Adjoint Lattices. International Journal of Computer Mathematics, 89, 1742-1752. http://dx.doi.org/10.1080/00207160.2012.689826
[25] Morcillo, P., Moreno, G., Penabad, J. and Vázquez, C. (2012) String-Based Multi-Adjoint Lattices for Tracing Fuzzy Logic Computations. Electronic Communications of the EASST, 55, 17.
[26] Vaucheret, C., Guadarrama, S. and Mu?oz, S. (2002) Fuzzy Prolog: A Simple General Implementation Using clp(r). Proceedings of Logic for Programming, Artificial Intelligence and Reasoning, LPAR 2002. In: Lecture Notes in Computer Science, Vol. 2514, Springer-Verlag, Berlin, 450-463.
[27] Rodrguez, M. and Romero, C.A. (2010) A Declarative Semantics for CLP with Qualification and Proximity. Theory and Practice of Logic Programming, 10, 627-642.
http://dx.doi.org/10.1017/S1471068410000323
[28] Nguyen, H. and Walker, E. (2000) A First Course in Fuzzy Logic. Chapman & Hall/CRC, Boca Ratón.
[29] Almendros-Jiménez, J., Luna, A. and Moreno, G. (2012) Fuzzy Logic Programming for Implementing a Flexible XPath-Based Query Language. Electronic Notes on Theoretical Computer Science, ENTCS, 282, 3-18. http://dx.doi.org/10.1016/j.entcs.2011.12.002
[30] Almendros-Jiménez, J., Luna, A. and Moreno, G. (2013) Annotating “Fuzzy Chance Degrees” When Debugging Xpath Queries. Advances in Computational Intelligence-Proceedings of the 12th International Work-Conference on Artificial Neural Networks, IWANN 2013 (Special Session on Fuzzy Logic and Soft Computing Application). In: Lecture Notes in Computer Science, Vol. 7903, Springer-Verlag, Berlin, 300-311.
[31] Almendros-Jiménez, J., Luna, A., Moreno, G. and Vázquez, C. (2013) Analyzing Fuzzy Logic Computations with Fuzzy XPath. Actas de las XIII Jornadas sobre Programación y Lenguajes, PROLE’13, Jornadas SISTEDES, Madrid, 18-20 September 2013, 136-150.
[32] Bofill, M., Moreno, G., Vázquez, C. and Villaret, M. (2013) Automatic Proving of Fuzzy Formulae with Fuzzy Logic Programming and SMT. Actas de las XIII Jornadas sobre Programación y Lenguajes, PROLE’13, Jornadas SISTEDES, Madrid, 18-20 September 2013, 151-165.
[33] Vázquez, C., Tomás, L., Moreno, G. and Tordsson, J. (2013) A Fuzzy Approach to Cloud Admission Control for Safe overbooking. Proceedings of 10th International Workshop on Fuzzy Logic and Applications, WILF 2013, Genoa, 7-10 November 2013, 212-225.
[34] Julián, P., Medina, J., Moreno, G. and Ojeda, M. (2010) Efficient Thresholded Tabulation for Fuzzy Query Answering. Studies in Fuzziness and Soft Computing (Foundations of Reasoning under Uncertainty), 249, 125-141. http://dx.doi.org/10.1007/978-3-642-10728-3_7
[35] Julián, P., Medina, J., Morcillo, P., Moreno, G. and Ojeda-Aciego, M. (2013) An Unfolding-Based Preprocess for Reinforcing Thresholds in Fuzzy Tabulation. In: I. Rojas, G. J. Caparrós, and J. Cabestany, Eds., IWANN (1). In: Lecture Notes in Computer Science, Vol. 7902, Springer, Berlin, 647-655.
[36] Bruno, N., Chaudhuri, S. and Gravano, L. (2002) Top-K Selection Queries over Relational Databases: Mapping Strategies and Performance Evaluation. ACM Transactions on Database Systems, 27, 153-187. http://dx.doi.org/10.1145/568518.568519
[37] Chang, K.C.C. and Hwang, S.W. (2002) Minimal Probing: Supporting Expensive Predicates for Top-K Queries. SIGMOD Proceedings of the 2002 ACM SIGMOD International Conference on Management of DataMadison, 3-6 June 2002, 346-357.
[38] Ilyas, I.F., Aref, W.G. and Elmagarmid, A.K. (2004) Supporting Top-K Join Queries in Relational Databases. The VLDB Journal, 13, 207-221. http://dx.doi.org/10.1007/s00778-004-0128-2
[39] Chaudhuri, S., Gravano, L. and Marian, A. (2004) Optimizing Top-K Selection Queries over Multimedia Repositories. IEEE Transactions on Knowledge and Data Engineering, 16, 992-1009.
http://dx.doi.org/10.1109/TKDE.2004.30
[40] Marian, A., Bruno, N. and Gravano, L. (2004) Evaluating Top-K Queries over Web-Accessible Databases. ACM Transactions on Database Systems, 29, 319-362. http://dx.doi.org/10.1145/ 1005566.1005569
[41] Theobald, M., Schenkel, R. and Weikum, G. (2005) Efficient and Self-Tuning Incremental Query Expansion for Top-K Query Processing. Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Salvador, 15-19 August 2005, 242-249.
[42] Li, C., Chang, K.C.C., Ilyas, I.F. and Song, S. (2005) Ranksql: Query Algebra and Optimization for Relational Top-K Queries. SIGMOD Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, Baltimore, 13-17 June 2005, 131-142.
[43] Lukasiewicz, T. and Straccia, U. (2007) Top-K Retrieval in Description Logic Programs under Vagueness for the Semantic Web. In: Prade, H. and Subrahmanian, V.S., Eds., SUM, In: Lecture Notes in Computer Science, Vol. 4772. Springer, Berlin, 16-30.
[44] Re, C., Dalvi, N.N. and Suciu, D. (2007) Efficient Top-K Query Evaluation on Probabilistic Data. IEEE 23rd International Conference on Data Engineering, Istanbul, 15-20 April 2007, 886-895.
[45] Eckhardt, A., Horváth, T. and Vojtás, P. (2007) Learning Different User Profile Annotated Rules for Fuzzy Preference Top-K Querying. In: Prade, H. and Subrahmanian, V.S., Eds., SUM, In: Lecture Notes in Computer Science, Vol. 4772. Springer, Berlin, 116-130.
[46] Ilyas, I.F., Beskales, G. and Soliman, M.A. (2008) A Survey of Top-K Query Processing Techniques in Relational Database Systems. ACM Computing Surveys, 40, Article No. 11.
[47] Prade, H. and Subrahmanian, V.S. (Eds.) (2007) Scalable Uncertainty Management. Proceedings of the 1st International Conference, SUM 2007, Washington DC, 10-12 October 2007. In: Lecture Notes in Computer Science, Vol. 4772, Springer, Berlin.