JMP  Vol.2 No.3 , March 2011
Magnetic, Structural and Morphological Characterization of Sr2GdRuO6 Double Perovskite
Abstract: We report structural, morphological and magnetic properties of the Sr2GdRuO6 compound, which is used as precursor oxide in the production process of RuSr2GdCu2O8 superconducting ruthenocuprates. The crystalline structure was studied by X-ray diffraction and Rietveld refinement. Results reveal that material crystallizes in a monoclinic double perovskite, space group P21/n (#14). Scanning Electron Microscopy experiments on samples show homogeneous granular morphology with grain size from 3 up to 7 μm. Semiquantitative analysis of composition was performed by the Energy Dispersive X-ray technique. Experimental results are 98% in agreement with the theoretical stoichiometry. Curves of magnetization as a function of temperature exhibit an antiferromagnetic-like behaviour, with Néel temperature TN=15.3 K and magnetic effective moment 8.72μB.
Cite this paper: nullL. Corredor, D. Téllez, J. Jr, P. Pureur and J. Roa-Rojas, "Magnetic, Structural and Morphological Characterization of Sr2GdRuO6 Double Perovskite," Journal of Modern Physics, Vol. 2 No. 3, 2011, pp. 154-157. doi: 10.4236/jmp.2011.23023.

[1]   L. Bauerfeind, W. Widder and H. F. Braun, Physica C, Vol. 254, 1995, p. 151. doi:10.1016/0921-4534(95)00574-9

[2]   T. P. Papageorgiou, T. Herrmannsd?rfer, R. Dinnerbier, T. Mai, T. Ernst, M. Wunschel and H. F. Braun, Physica C , Vol. 377, 2002, p. 383. doi:10.1016/S0921-4534(01)01291-6

[3]   L. T. Yang, J. K. Liang, Q. L. Liu, C. Q. Jin, X. M. Feng, G. B. Song, J. Luo, F S. Liu and G. H. Rao, Journal of Solid State Chemistry, Vol. 177, 2004, p. 1072. doi:10.1016/j.jssc.2003.10.015

[4]   L. T. Corredor, J. Velasco Zárate, D. A. Landínez Téllez, F. Fajardo, J. Arbey Rodríguez and M. J. Roa-Rojas, Physica B, Vol. 404, 2009, p. 2733. doi:10.1016/j.physb.2009.06.078

[5]   T. Nachtrab, C. Bernhard, C. T. Lin, D. Koelle and R. Kleiner, C. R. Physique, Vol. 7, 2006, p. 6885. doi:10.1016/j.crhy.2005.11.010

[6]   A. A. Vasiliev, M. Aindow, Z. H. Han, J. I. Budnik, W. A. Hines, P. W. Klamut, M. Maxwell and B. Dabrowski, Applied Physic Letters, Vol. 85, 2004, p. 3217. doi:10.1063/1.1805176

[7]   C. Bernhard, J. L. Tallon, C. Niedermayer, T. Blasius, A. Golnik, E. Br¨ucher, R. K. Kremer, D. R. Noakes, C. E. Stronach, and E. J. Ansaldo, Physical Review B, Vol. 59, 1999, p. 14099. doi:10.1103/PhysRevB.59.14099

[8]   J. D. Jorgensen, O. Chmaissem, H. Shaked, S. Short, P. W. Klamut, B. Dabrowski, J. L. Tallon, Physical Review B, Vol. 63, 2003, p. 054440. doi:10.1103/PhysRevB.63.054440

[9]   A. C. Larson and R. B Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Report LAUR, 2000, p. 86.

[10]   M. W. Lufaso and P. M. Woodward, Acta Crystallographica B, Vol. 57, 2001, p. 725. doi:10.1107/S0108768101015282

[11]   C. J. Howard, B. J. Kennedy and P. M. Woodward, Acta Crystallographica B, Vol. 59, 2003, p. 463. doi:10.1107/S0108768103010073

[12]   R. Sáez-Puche, E. Climent-Pascual, R. Ruiz-Bustos, M. A. Alario-Franco and M. T. Fernández-Díaz, Progress in Solid State Chemistry Vol. 35, 2007, p. 211. doi:10.1016/j.progsolidstchem.2007.02.001

[13]   Y. Doi and Y. Hinatsu, Journal of Physics Condensed Matter, Vol. 11, 1999, p. 4813. doi:10.1088/0953-8984/11/25/302

[14]   N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College Publishing, Fort Worth, 1976, p. 657.