ABC  Vol.4 No.2 , April 2014
Differential Deterrent Activity of Natural Products Isolated from Allophylus edulis (Sapindaceae)
Abstract: The phytochemical study of Uruguayan specimens of Allophylus edulis (Sapindaceae) yielded the isolation of various natural products being some of them reported for the first time in this species. Although most of them are ubiquitous in the plant kingdom, some revealed in this study to have anti insect properties. Two sesquiterpenes (6,7-Epoxicaryophyllene and spathulenol), two phytosterols (sitosterone and sitosterol), a pentacyclic triterpene (lupeol) and a clerodane diterpene were isolated. 6,7-Epoxycaryophyllene, lupeol and sitosterol showed to be deterrent against the aphid Myzus persicae and the coleopteran Epilachna paenulata. Moreover, the crude ethanolic extract of twigs of A. edulis showed to be deterrent against both insect species being some of its fractions also active against another aphid, Rhopalosiphum padi. Various active compounds against different insect models have been isolated from the twigs extract of A. edulis. The results evidenced synergic as well as antagonistic effects in the mixture, summed to differential activity against the insects, a desirable attribute when developing botanical pesticides.
Cite this paper: Díaz, M. , Castillo, L. , Díaz, C. , Álvarez, R. , González-Coloma, A. and Rossini, C. (2014) Differential Deterrent Activity of Natural Products Isolated from Allophylus edulis (Sapindaceae). Advances in Biological Chemistry, 4, 168-179. doi: 10.4236/abc.2014.42021.

[1]   Philogène, C., Regnault-Roger, C. and Vincent, C. (2005) Botanilcals: Yesterday’s and Today’s Promises. In: Regnault-Roger, C., Philogène, B.J.R. and Vincent, C., Eds., Biopesticides of Plant Oirigin, Intercept Ltd, Paris, 1-15.

[2]   Bentancourt, C.M. and Scatoni, I.B. (1999) Guía de Insectos y ácaros de Importancia Agrícola y Forestal en el Uruguay.

[3]   Marwah, R.G., Fatope, M.O., Al Mahrooqi, R., Varma, G.B., Al Abadi, H. and Al-Burtamani, S.K.S. (2007) Antioxidant Capacity of Some Edible and Wound Healing Plants in Oman. Food Chemistry, 101, 465-470.

[4]   Sofidiya, M.O., Jimoh, F.O., Aliero, A.A., Afolayan, A.J., Odukoya, O.A. and Familoni, O.B. (2012) Evaluation of Antioxidant and Antibacterial Properties of Six Sapindaceae Members. Journal of Medicinal Plants Research, 6, 154-160.

[5]   Bradacs, G., Maes, L. and Heilmann, J. (2010) In Vitro Cytotoxic, Antiprotozoal and Antimicrobial Activities of Medicinal Plants from Vanuatu. Phytoterapy Research, 24, 800-809.

[6]   Hoffmann-Bohm, K., Lotter, H., Seligmann, O. and Wagner, H. (1992) Antihepatotoxic C-Glycosylflavones from the Leaves of Allophyllus edulis var. edulis and gracilis. Planta Medica, 58, 544-548.

[7]   Arisawa, M., Morinaga, Y., Nishi, Y., Ueno, H., Suzuki, S., Hayashi, T., Shimizu, M., Yoshizaki, M., Morita, N. and Berganza, L.H. (1989) Chemical and Pharmaceutical Studies on Medicinal Plants in Paraguay. Constituents of Angiotensin Converting Enzyme Inhibitory Fraction from “Cocu,” Allophylus edulis Radlk. Shoyakugaku Zasshi, 43, 78-80.

[8]   Dharmani, P., Mishra, P.K., Maurya, R., Chauhan, V.S. and Palit, G. (2005) Allophylus serratus: A Plant with Potential Anti-Ulcerogenic Activity. Journal of Ethnopharmacology, 99, 361-366.

[9]   Yajia, M.E., Marti, D.A., Bidau, C.J., Amat, A.G., Riglos, A.G. and Silvestroni, A. (1999) Genotoxicity Evaluation of Allophylus edulis (Camb.) Radlk. (Sapindaceae) Aqueous Extract. Second World Congress on Medicinal and Aromatic Plants for Human Welfare Wocmap-2: Pharmacognosy, Pharmacology, Phytomedicines, Toxicology, 501, 31-35.

[10]   Körbes, V.C. (1995) Plantas Medicinais. 48th Edition.

[11]   Castillo, L., González-Coloma, A., González, A., Díaz, M., Santos, E., Alonso-Paz, E., Bassagoda, M.J. and Rossini, C. (2009) Screening of Uruguayan Plants for Deterrent Activity against Insects. Industrial Crops and Products, 29, 235-240.

[12]   Aichholz, R., Spitzer, V. and Lorbeer, E. (1997) Analysis of Cyanolipids and Triacylglycerols from Sapindaceae Seed Oils with High-Temperature Gas Chromatography and High-Temperature Gas Chromatography-Chemical Ionization Mass Spectrometry. Journal of Chromatography A, 787, 181-194.

[13]   Braekman, J.C., Daloze, D. and Pasteels, J.M. (1982) Cyanogenic and Other Glucosides in a Neo-Guinean Bug Leptocoris isolata. Possible Precursors in Its Host Plant. Biochemical Systematics and Ecology, 10, 355-3664.

[14]   Díaz, M., González, A., Castro-Gamboa, I., Gonzáles, D. and Rossini, C. (2008) First Record of L-Quebrachitol in Allophylus edulis (Sapindaceae). Carbohydrate Research, 343, 2699-2700.

[15]   Wagner, H. and Bladt, S. (1996) Plant Drug Analysis. A Thin Layer Chromatography Atlas.

[16]   Gutierrez, C., Fereres, A., Reina, M., Cabrera, R. and Gonzalez-Coloma, A. (1997) Behavioral and Sublethal Effects of Structurally Related Lower Terpenes on Myzus persicae. Journal of Chemical Ecology, 23, 1641-1650.

[17]   Bellomo, A., Camarano, S., Rossini, C. and Gonzalez, D. (2009) Enantiospecific Synthesis and Insect Feeding Activity of Sulfur-Containing Cyclitols. Carbohydrate Research, 344, 44-51.

[18]   Lowry, R. (2011) VassarStats Web Site for Statistical Computation.

[19]   Reina, M., Nold, M., Santana, O., Orihuela, J.C. and Gonzalez-Coloma, A. (2002) C-5-Substituted Antifeedant Silphinene Sesquiterpenes from Senecio palmensis. Journal of Natural Products, 65, 448-453.

[20]   Ragasa, C.Y., Ganzon, J., Hofilena, J., Tamboong, B. and Rideout, J.A. (2003) A New Furanoid Diterpene from Caesalpinia pulcherrima. Chemical & Pharmaceutical Bulletin, 51, 1208-1210.

[21]   Aguiar, J.C.D., Santiago, G.M.P., Lavor, P.L., Veras, H.N.H., Ferreira, Y.S., Lima, M.A.A., Arriaga, A.M.C., Lemos, T.L.G., Lima, J.Q., de Jesus, H.C.R., Alves, P.B. and Braz-Filho, R. (2010) Chemical Constituents and Larvicidal Activity of Hymenaea courbaril Fruit Peel. Natural Product Communications, 5, 1977-1980.

[22]   da Silva Gois, R.W., de Sousa, L.M., Lemos, T.L.G., Arriaga, A.M.C., Andrade-Neto, M., Santiago, G.M.P., Ferreira, Y.S., Alves, P.B. and de Jesusc, H.C.R. (2011) Chemical Composition and Larvicidal Effects of Essential Oil from Bauhinia acuruana (Moric) against Aedes aegypti. Journal of Essential Oil Research, 23, 59-62.

[23]   Ben Jemaa, M.J., Tersim, N., Toudert, K.T. and Khouja, M.L. (2012) Insecticidal Activities of Essential Oils from Leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and Comparative Chemical Composition. Journal of Stored Products Research, 48, 97-104.

[24]   Li, W.Q., Jiang, C.H., Chu, S.S., Zuo, M.X. and Liu, Z.L. (2010) Chemical Composition and Toxicity against Sitophilus zeamais and Tribolium castaneum of the Essential Oil of Murraya exotica Aerial Parts. Molecules, 15, 5831-5839.

[25]   Yang, K., Zhou, Y.X., Wang, C.F., Du, S.S., Deng, Z.W., Liu, Q.Z. and Liu, Z.L. (2011) Toxicity of Rhododendron anthopogonoides Essential Oil and Its Constituent Compounds towards Sitophilus zeamais. Molecules, 16, 7320-7330.

[26]   Cantrell, C.L., Klun, J.A., Bryson, C.T., Kobaisy, M. and Duke, S.O. (2005) Isolation and Identification of Mosquito Bite Deterrent Terpenoids from Leaves of American (Callicarpa americana) and Japanese (Callicarpa japonica) Beautyberry. Journal of Agricultural and Food Chemistry, 53, 5948-5953.

[27]   Aciole, S.D.G., Piccoli, C.F., Duque, J.E., Costa, E.V., Navarro-Silva, M.A., Marques, F.A., Maia, B., Pinheiro, M.L.B. and Rebelo, M.T. (2011) Insecticidal Activity of Three Species of Guatteria (Annonaceae) against Aedes aegypti (Diptera: Culicidae). Revista Colombiana De Entomologia, 37, 262-268.

[28]   de Moraes, S.M., Facundo, V.A., Bertini, L.M., Cavalcanti, E.S.B., dos Anjos, J.F., Ferreira, S.A., de Brito, E.S. and de Souza Neto, M.A. (2007) Chemical Composition and Larvicidal Activity of Essential Oils from Piper Species. Biochemical Systematics and Ecology, 35, 670-675.

[29]   Cetin, H., Yanikoglu, A. and Cilek, J.E. (2011) Larvicidal Activity of Selected Plant Hydrodistillate Extracts against the House Mosquito, Culex pipiens, a West Nile Virus Vector. Parasitology Research, 108, 943-948.

[30]   Dua, V.K., Alam, M.F., Pandey, A.C., Rai, S., Chopra, A.K., Kaul, V.K. and Dash, A.P. (2008) Insecticidal Activity of Valeriana jatamansi (Valerianaceae) against Mosquitoes. Journal of the American Mosquito Control Association, 24, 315-318.

[31]   Dua, V.K., Pandey, A.C. and Dash, A.P. (2010) Adulticidal Activity of Essential Oil of Lantana camara Leaves against Mosquitoes. Indian Journal of Medical Research, 131, 434-439.

[32]   Zhu, L. and Tian, Y.J. (2011) Chemical Composition and Larvicidal Activity of Blumea densiflora Essential Oils against Anopheles anthropophagus: A Malarial Vector Mosquito. Parasitology Research, 109, 1417-1422.

[33]   Bachrouch, O., Mediouni-Ben Jemaa, J., Wissem, A.W., Talou, T., Marzouk, B. and Abderraba, M. (2010) Composition and Insecticidal Activity of Essential Oil from Pistacia lentiscus L. against Ectomyelois ceratoniae Zeller and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research, 46, 242-247.

[34]   Alva, M., Popich, S., Borkosky, S., Cartagena, E. and Bardon, A. (2012) Bioactivity of the Essential Oil of an Argentine Collection of Acanthospermum hispidum (Asteraceae). Natural Product Communications, 7, 245-248.

[35]   Chu, S.S., Liu, Q.R., Jiang, G.H. and Liu, Z.L. (2012) Chemical Composition and Insecticidal Activity of the Essential Oil of Amethystea caerulea L. Natural Product Research, 26, 1207-1212.

[36]   Francois, T., Michel, J.D.P., Lambert, S.M., Ndifor, F., Vyry, W.N.A., Henri, A.Z.P. and Chantal, M. (2009) Comparative Essential Oils Composition and Insecticidal Effect of Different Tissues of Piper capense L., Piper guineense Schum. et Thonn., Piper nigrum L. and Piper umbellatum L. Grown in Cameroon. African Journal of Biotechnology, 8, 424-431.

[37]   Zoubiri, S. and Baaliouamer, A. (2012) Chemical Composition and Insecticidal Properties of Lantana camara L. Leaf Essential Oils from Algeria. Journal of Essential Oil Research, 24, 377-383.

[38]   Prachayasittikul, S., Suphapong, S., Worachartcheewan, A., Lawung, R., Ruchirawat, S. and Prachayasittikul, V. (2009) Bioactive Metabolites from Spilanthes acmella Murr. Molecules, 14, 850-867.

[39]   Burns, D., Reynolds, W.F., Buchanan, G., Reese, P.B. and Enriquez, R.G. (2000) Assignment of H-1 and C-13 Spectra and Investigation of Hindered Side-Chain Rotation in Lupeol Derivatives. Magnetic Resonance in Chemistry, 38, 488-493.<488::AID-MRC704>3.0.CO;2-G

[40]   Gonzalez-Coloma, A., Lopez Balboa, C., Santana, O., Reina, M. and Fraga, B.M. (2011) Triterpene-Based Plant Defenses. Phytochemistry Reviews, 10, 245-260.

[41]   Brimson, J.M., Brimson, S.J., Brimson, C.A., Rakkhitawatthana, V. and Tencomnao, T. (2012) Rhinacanthus nasutus Extracts Prevent Glutamate and Amyloid-Beta Neurotoxicity in HT-22 Mouse Hippocampal Cells: Possible Active Compounds Include Lupeol, Stigmasterol and Beta-Sitosterol. International Journal of Molecular Sciences, 13, 5074-5097.

[42]   de Oliveira, P.V., Lemos, R.P.L. and Conserva, L.M. (2012) Chemical Constituents of Rourea doniana. Revista Brasileira De Farmacognosia—Brazilian Journal of Pharmacognosy, 22, 451-454.

[43]   Dong, L., Zhang, Y., Cheng, B., Wu, Y., Li, Y., Yao, H. and Li, Y. (2012) Chemical Constituents from Ampelopsis sinica var. Hancei Prevent Liver Damage. Latin American Journal of Pharmacy, 31, 195-199.

[44]   dos Santos, E.O., Meira, M., do Vale, A.E., David, J.M., de Queiroz, L.P. and David, J.P. (2012) Isolation and Characterization of New Ceramides from Aerial Parts of Lepidaploa cotoneaster. Natural Product Communications, 7, 781-783.

[45]   Fayek, N.M., Monem, A.R.A., Mossa, M.Y., Meselhy, M.R. and Shazly, A.H. (2012) Chemical and Biological Study of Manilkara zapota (L.) Van Royen Leaves (Sapotaceae) Cultivated in Egypt. Pharmacognosy Research, 4, 85-91.

[46]   Keawsaard, S., Natakankitkul, S., Liawruangrath, S., Teerawutgulrag, A., Trisuwan, K., Charoenying, P., Pyne, S.G. and Liawruangrath, B. (2012) Anticancer and Antibacterial Activities of the Isolated Compounds from Solanum spirale Roxb. Leaves. Chiang Mai Journal of Science, 39, 445-454.

[47]   Kumari, A. and Kakkar, P. (2012) Lupeol Prevents Acetaminophen-Induced in Vivo Hepatotoxicity by Altering the Bax/Bcl-2 and Oxidative Stress-Mediated Mitochondrial Signaling Cascade. Life Sciences, 90, 561-570.

[48]   Mishra, P.M., Sree, A. and Panigrahi, M. (2012) Isolation of a Lupane Triterpene Fatty Acid Ester with Antibacterial Activity from the Leaves of Finlaysonia obovata. Chemistry of Natural Compounds, 48, 161-163.

[49]   Sakong, B.M., Ahmed, A.S., McGaw, L.J. and Eloff, J.N. (2012) Isolation and Characterization of Compounds from Calodendrum capense and Lydenburgia cassinoides with Antimicrobial Potential against Opportunistic Pathogens. South African Journal of Botany, 79, 210-210.

[50]   Thoison, O., Sevenet, T., Niemeyer, H.M. and Russell, G.B. (2004) Insect Antifeedant Compounds from Nothofagus dombeyi and N. pumilio. Phytochemistry, 65, 2173-2176.

[51]   Kojima, H., Sato, N., Hatano, A. and Ogura, H. (1990) Constituents of the Labiatae Plants. 5. Sterol Glucosides from Prunella vulgaris. Phytochemistry, 29, 2351-2355.

[52]   Kolak, U., Topcu, G., Birteksoz, S., Otuk, G. and Ulubelen, A. (2005) Terpenoids and Steroids from the Roots of Salvia blepharochlaena. Turkish Journal of Chemistry, 29, 177-186.

[53]   Santana, O., Reina, M., Fraga, B.M., Sanz, J. and Gonzalez-Coloma, A. (2012) Antifeedant Activity of Fatty Acid Esters and Phytosterols from Echium wildpretii. Chemistry & Biodiversity, 9, 567-576.

[54]   Behmer, S.T. and Elias, D.O. (1999) The Nutritional Significance of Sterol Metabolic Constraints in the Generalist Grasshopper Schistocerca americana. Journal of Insect Physiology, 45, 339-348.

[55]   Hamrouni, I., Chraief, I., Hammami, M. and Marzouk, B. (2005) Sterol Composition and Accumulation in Maturing Borage (Borago officinalis L.) Seeds. Rivista Italiana delle Sostanze Grasse, 82, 83-86.

[56]   Schmidt, J., Spengler, B., Adam, G. and Budzikiewicz, H. (1993) Sterol Constituents in Seeds of Ornithopus sativus. Phytochemistry, 33, 506-507.

[57]   Sivakumar, G., Bati, C.B., Perri, E. and Uccella, N. (2006) Gas Chromatography Screening of Bioactive Phytosterols from Mono-Cultivar Olive Oils. Food Chemistry, 95, 525-528.

[58]   Tori, M., Katto, A. and Sono, M. (1999) Nine New Clerodane Diterpenoids from Rhizomes of Solidago altissima. Phyto-chemistry, 52, 487-493.

[59]   Fazio, C., Passannanti, S., Paternostro, M.P. and Piozzi, F. (1992) Neo-Clerodane Diterpenoids from Stachys rosea. Phytochemistry, 31, 3147-3149.

[60]   Niu, H.M., Zeng, D.Q., Long, C.L., Peng, Y.H., Wang, Y.H., Luo, J.F., Wang, H.S., Shi, Y.N., Tang, G.H. and Zhao, F.W. (2010) Clerodane Diterpenoids and Prenylated Flavonoids from Dodonaea viscosa. Journal of Asian Natural Products Research, 12, 7-14.

[61]   Omosa, L.K., Midiwo, J.O., Derese, S., Yenesew, A., Peter, M.G. and Heydenreich, M. (2010) Neo-Clerodane Diterpenoids from the Leaf Exudate of Dodonaea angustifolia. Phytochemistry Letters, 3, 217-220.

[62]   Vaccarini, C.E., Palacios, S.M., Meragelman, K.M. and Sosa, V.E. (2002) Antifeedant Activity of Metabolites from Viguiera tucumanensis. Natural Product Letters, 16, 323-327.

[63]   Banerjee, H.N. (1936) Clerodin from Clerodendron infortunatum. Science and Culture, 2, 163.

[64]   Klein Gebbinck, E.A., Jansen, B.J.M. and de Groot, A. (2002) Insect Antifeedant Activity of Clerodane Diterpenes and Related Model Compounds. Phytochemistry, 61, 737-770.

[65]   Sosa, M.E. and Tonn, C.E. (2008) Plant Secondary Metabolites from Argentinean Semiarid Lands: Bioactivity against Insects. Phytochemistry Reviews, 7, 3-24.