AM  Vol.5 No.7 , April 2014
Continued Fractions and Dynamics
Author(s) Stefano Isola

Several links between continued fractions and classical and less classical constructions in dynamical systems theory are presented and discussed.

Cite this paper
Isola, S. (2014) Continued Fractions and Dynamics. Applied Mathematics, 5, 1067-1090. doi: 10.4236/am.2014.57101.
[1]   Khinchin, A.Y. (1964) Continued Fractions. The University of Chicago Press, Chicago.

[2]   Hardy, G. H. and Wright, E. M. (1979) An Introduction to the Theory of Numbers. Oxford University Press, Oxford.

[3]   Hensley, D. (2006) Continued Fractions. World Scientific, Singapore City.

[4]   Adamczewski, B. and Allouche, J.P. (2007) Reversal and Palindromes in Continued Fractions. Theoretical Computer Science, 380, 220-237.

[5]   Farey, J. (1816) On a Curious Property of Vulgar Fractions. London and Edinburgh Philosophical Magazine and Journal of Science, 47, 385-386.

[6]   Appelgate, H. and Onishi, H. (1983) The Slow Continued Fraction Algorithm via 2 × 2 Integer Matrices. The American Mathematical Monthly, 90, 443-455.

[7]   Lagarias, J.C. (2001) The Farey Shift and the Minkowski -Function. Preprint.

[8]   Apostol, T. (1976) Modular Functions and Dirichlet Series in Number Theory. Graduate Texts in Mathematic 41, Springer, New York.

[9]   Bonanno, C. and Isola, S. (2009) A Renormalization Approach to Irrational Rotations. Annali di Matematica Pura ed Applicata, 188, 247-267.

[10]   Alessandri, P. and Berthè, V. (1998) Three Distances Theorem and Combinatorics on Words. L’Enseignement Mathématique, 44, 103-132.

[11]   Conze, J.P. and Guivarc’h, Y. (2002) Densité d’orbites d’actions de groupes linéaires et propriétés d’équidistribution de marches aléatoires. In: Burger, M. and Iozzi, A., Eds., Rigidity in Dynamics and Geometry (Cambridge 2000), Springer, Berlin, 39-76.

[12]   Knauf, A. (1999) Number Theory, Dynamical Systems and Statistical Mechanics. Reviews in Mathematical Physics, 11, 1027-1060.

[13]   Salem, R. (1943) On Some Singular Monotone Functions Which Are Strictly Increasing. Transactions of the American Mathematical Society, 53, 427-439.

[14]   Kinney, J.R. (1960) A Note on a Singular Function of Minkowski. Proceedings of the American Mathematical Society, 11, 788-794.

[15]   Bonanno, C. and Isola, S. (2009) Orderings of the Rationals and Dynamical Systems. Colloquium Mathematicum, 116, 165-189.

[16]   Alkauskas, G. (2010) The Minkowski Question Mark Function: Explicit Series for the Dyadic Period Function and Moments. Mathematics and Computation, 79, 383-418.

[17]   Viader, P., Paradis, J. and Bibiloni, L. (2001) A New Light on Minkowski’s (x) function. Journal of Number Theory, 73, 212-227.

[18]   Gouezel, S. (2009) Local Limit Theorem for Non-Uniformly Partially Hyperbolic Skew-Products and Farey Sequences. Duke Mathematical Journal, 147, 192-284.

[19]   Bonanno, C., Carminati, C., Isola, S. and Tiozzo, G. (2013) Dynamics of Continued Fractions and Kneading Sequences of Unimodal Maps. Discrete and Continuous Dynamical Systems, 33, 1313-1332.

[20]   Lewis, J.B. and Zagier, D. (1997) Period Functions and the Selberg Zeta Function for the Modular Group. In: Drouffe, D.M. and Zuber, J.B., Eds., The Mathematical Beauty of Physics, Advanced Series in Mathematical Physics, Vol. 24, World Scientific, River Edge, 83-97.

[21]   Isola, S. (2002) On the Spectrum of Farey and Gauss Maps. Nonlinearity, 15, 1521-1539.

[22]   Lewis, J.B. (1997) Spaces of Holomorphic Functions Equivalent to Even Maass Cusp forms. Inventiones Mathematicae, 127, 271-306.

[23]   Bonanno, C. and Isola, S. (2014) A Thermodynamic Approach to Two-Variable Ruelle and Selberg Zeta Functions via the Farey Map. Nonlinearity, to appear.

[24]   Bowen, R. (1976) Equilibrium States and Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, 470.

[25]   Ruelle, D. (1978) Thermodynamic Formalism. Addison-Wesley Publishing Company, Boston.

[26]   Isola, S. (2003) On Systems with Finite Ergodic Degree. Far East Journal of Dynamical Systems, 5, 1-62.

[27]   Knauf, A. (1998) The Number-Theoretical Spin Chain and the Riemann Zeros. Communications in Mathematical Physics, 196, 703-731.

[28]   Knauf, A. (1993) On a Ferromagnetic Spin Chain. Communications in Mathematical Physics, 153, 77-115.

[29]   Kotani, M. and Sunada, T. (2001) The Pressure and Higher Correlations for an ANOSOV Diffeomorphism. Ergodic Theory and Dynamical Systems, 21, 807-821.

[30]   Thaler, M. (1995) A Limit Theorem for the Perron-Frobenius Operator of Transformations on [0,1] with Indifferent Fixed Points. Israel Journal of Mathematics, 91, 111-127.

[31]   Degli Esposti, M., Isola, S. and Knauf, A. (2007) Generalized Farey Trees, Transfer Operators and Phase Transitions. Communications in Mathematical Physics, 275, 297-329.

[32]   Boca, F. (2007) Products of Matrices and and the Distribution of Reduced Quadratic Irrationals. Journal für die reine und angewandte Mathematik, 2007, 149-165.

[33]   Bonanno, C., Graffi, S. and Isola, S. (2008) Spectral Analysis of Transfer Operators Associated to Farey Fractions. Rendiconti Lincei-Matematica e Applicazioni, 19, 1-23.

[34]   Contucci, P. and Knauf, A. (1997) The Phase Transition of the Number-Theoretical Spin Chain. Forum Mathematicum, 9, 547-567.