A New Look for Starlike Logharmonic Mappings

Show more

References

[1] Abdulhadi, Z. (1996) Close-to-Starlike Logharmonic Mappings. The International Journal of Mathematics and Mathematical Sciences, 19, 563-574.

[2] Abdulhadi, Z. (2002) Typically Real Logharmonic Mappings. The International Journal of Mathematics and Mathematical Sciences, 31, 1-9.

[3] Abdulhadi, Z. and Bshouty, D. (1988) Univalent Functions in . Transactions of the AMS—American Mathematical Society, 305, 841-849.

[4] Abdulhadi, Z. and Hengartner, W. (1987) Spirallike Logharmonic Mappings. Complex Variables, Theory and Application, 9, 121-130.

[5] Abdulhadi, Z., Hengartner, W. and Szynal, J. (1993) Univalent Logharmonic Ring Mappings. Proceedings of the American Mathematical Society, 119, 735-745.

[6] Abdulhadi, Z. and Hengartner, W. (1996) One Pointed Univalent Logharmonic Mappings. Journal of Mathematical Analysis and Applications, 203, 333-351.

[7] Abdulhadi, Z. and Hengartner, W. (2001) Polynomials in . Complex Variables, Theory and Application, 46, 89107.

[8] Abu-Muhanna, Y. and Lyzzaik, A. (1990) The Boundary Behaviour of Harmonic Univalent Maps. Pacific Journal of Mathematics, 141, 1-20.

http://dx.doi.org/10.2140/pjm.1990.141.1

[9] Clunie, J. and Sheil-Smal, T. (1984) Harmonic Univalent Functions. Annales Academic Scientiarum Fennice Mathematica, 9, 3-25.

[10] Duren, P. and Schober, G. (1987) A Variational Method for Harmonic Mappings on Convex Regions. Complex Variables, Theory and Application, 9, 153-168.

http://dx.doi.org/10.1080/17476938708814259

[11] Duren, P. and Schober, G. (1989) Linear Extremal Problems for Harmonic Mappings of the Disk. Proceedings of the American Mathematical Society, 106, 967-973.

http://dx.doi.org/10.1090/S0002-9939-1989-0953740-5

[12] Hengartner, W. and Schober, G. (1986) On the Boundary Behavior of Orientation-Preserving Harmonic Mappings. Complex Variables, Theory and Application, 5, 197-208.

http://dx.doi.org/10.1080/17476938608814140

[13] Hengartner, W. and Schober, G. (1986) Harmonic Mappings with Given Dilatation. Journal London Mathematical Society, 33, 473-483.

http://dx.doi.org/10.1112/jlms/s2-33.3.473

[14] Jun, S.H. (1993) Univalent Harmonic Mappings on Proceedings of the American Mathematical Society, 119, 109-114.

http://dx.doi.org/10.1090/S0002-9939-1993-1148026-3

[15] Nitsche, J.C.C. (1989) Lectures on Minimal Surfaces. Vol. 1, Translated from the German by Jerry M. Feinberg, Cambridge University Press, Cambridge.

[16] Osserman, R. (1986) A Survey of Minimal Surfaces. 2nd Edition, Dover, New York.

[17] Baernstein, A. (1974) Integral Means, Univalent Functions and Circular Symmetrization. Acta Mathematica, 133, 139169.

http://dx.doi.org/10.1007/BF02392144

[18] Duren, P. (1983) Univalent Functions. Springer-Verlag, Berlin.