JBNB  Vol.5 No.2 , April 2014
The Lipid Bilayer of Biological Vesicles: A Liquid-Crystalline Material as Nanovehicles of Information

The biological intracellular vesicles, formed from the cell membrane or from different cell organelles, play a main role in the intracellular transport, transfer and exchange of molecules and information. Extracellular vesicles are also detected in organisms belonging to any of the three main branches of evolution, Archaea, Bacteria and Eukarya. There is an increasing consensus that these vesicles are important mediators of intercellular communication. All the intracellular and extracellular vesicles present a characteristic lipid composition and organization that governs their formation, targeting and function. This paper gives an overview of the lipid chemical and physical structure, strongly related to their biological function. The properties and role of the different types of lipids from membranes and vesicles are described. Then, their physical structure is shown as self-associated in a bilayer and organized as a lyotropic liquid crystal. The present paper underlies the structural similarity between these biological vesicles and a new synthetic material, theliquid crystalline fullerodendrimers” obtained from the biological model. It is composed of a basket of carbon associated with a liquid crystalline material and has been shown to exhibit highly efficient properties of information transfer. Our observation stresses the essential role of the liquid crystalline structure of lipids in their function as biological nanovehicles of information. The comparison with the synthetic material contributes to a better understanding of the role of lipids for cell communication in living organisms.

Cite this paper: Alfsen, A. and Tatischeff, I. (2014) The Lipid Bilayer of Biological Vesicles: A Liquid-Crystalline Material as Nanovehicles of Information. Journal of Biomaterials and Nanobiotechnology, 5, 105-115. doi: 10.4236/jbnb.2014.52013.

[1]   Forterre, P. and Gribaldo, S. (2007) The Origin of Modern Terrestrial Life. HFSP Journal, 1, 156-168.

[2]   Tatischeff, I., Bomsel, M., de Paillerets, C., Durand, H., Geny, B., Segretain, D., Turpin, E. and Alfsen, A. (1998) Dictyostelium Discoideum Cells Shed Vesicles with Associated DNA and Vital Stain Hoechst 33342. Cellular and Molecular Life Sciences, 54, 476-487.

[3]   Huang, X.H., Bomsel, M., de Paillerets, C., Weintraub, H. and Alfsen, A. (1990) Biochemical Characterization of Algal Coated Vesicles. Biochimie, 72, 41-49.

[4]   Hugel, B., Martinez, M.C., Kunzelmann, C. and Freyssinet, J.M. (2005) Membrane Microparticles: Two Sides of the Coin. Physiology (Bethesda), 20, 22-27.

[5]   Alfsen, A. (1989) Membrane Dynamics and Molecular Traffic and Sorting in Mammalian Cells. Progress in Biophysics and Molecular Biology, 54, 145-157.

[6]   Deloche, O. and Schekman, R. (2002) VPS10p Cycles between the TGN and the Late Endosome via the Plasma Membrane in Clathrin Mutants. Molecular Biology of the Cell, 13, 4296-4307.

[7]   Pellet, P.A., Dietrich, F., Bewersdorf, J., Rothman, J.E. and Lavieu, G. (2013) Inter-Golgi Transport Mediated by COPI-Containing Vesicles Carrying Small Cargoes. ELife, 2, e01296.

[8]   Stamnes, M.A., Craighead, M.W., Hoe, M.H., Lampen, N., Geromanos, S., Tempst, P. and Rothman, J.E. (1995) An Integral Membrane Component of Coatomer-Coated Transport Vesicles Defines a Family of Proteins Involved in Budding. Proceeding of the National Academy of Sciences of the USA, 92, 8011-8015.

[9]   Zhou, P., Bacaj, T., Yang, X., Pang, Z.P. and Südhof, T.C. (2002) Lipid-Anchored SNAREs Lacking Transmembrane Regions Fully Support Membrane Fusion During Neurotransmitter Release. Neuron, 80, 470-483.

[10]   Zimmermann, H., Volknandt, W., Henkel, A., Bonzelius, F., Janetzko, A. and Kanaseki, T. (1989) The Synaptic Vesicle Membrane: Origin, Axonal Distribution, Protein Components, Exocytosis and Recycling. Cell Biology International Reports, 13, 993-1006.

[11]   de Paillerets, C., Bomsel, M., Weintraub, H., Pépin, D. and Alfsen, A. (1987) Clustering in Coated Vesicles of Polyunsaturated Phospholipids Segregated from Plasma and Golgi Membranes of Adrenocortical Cells. FEBS Letters, 219, 113-118.

[12]   Munro, S. (2004) Organelle Identity and the Organization of Membrane Traffic. Nature Cell Biology, 6, 469-472.

[13]   Soler, N., Marguet, E., Verbavatz, J.M. and Forterre, P. (2008) Virus-Like Vesicles and Extracellular DNA Produced by Hyperthermophilic Archaea of the Order Thermococcales. Research in Microbiology, 159, 390-399.

[14]   Beveridge, T.J. (1999) Structures of Gram-Negative Cell Walls and their Derived Membrane Vesicles. Journal of Bacteriology, 181, 4725-4733.

[15]   Mashburn, L.M. and Whiteley, M. (2005) Membrane Vesicles Traffic Signals and Facilitate Group Activities in a Prokaryote. Nature, 437, 422-425.

[16]   Kuehn, M.J. and Kesty, N.C. (2005) Bacterial Outer Membrane Vesicles and the Host-Pathogen Interaction. Genes & Development, 19, 2645-2655.

[17]   Lavialle, F., Deshayes, S., Gonnet, F., Larquet, E., Kruglick, S.G., Boisset, N., Daniel, R., Alfsen, A. and Tatischeff, I. (2009) Nanovesicles Released by Dictyostelium Cells: A Potential Carrier for Drug Delivery. International Journal of Pharmacy, 380, 206-215.

[18]   Tatischeff, I., Lavialle, F., Pigaglio-Deshayes, S., Pechoux-Longin, C., Chinsky, L. and Alfsen, A. (2008) Dictyostelium Extracellular Vesicles containing Hoechst 33342 Transfer the Dye into the Nuclei of Living Cells: A Fluorescence Study. Journal of Fluorescence, 18, 319-328.

[19]   Gruenberg, J. (2003) Lipids in Endocytic Membrane Transport and Sorting. Current Opinion in Cell Biology, 15, 382-388.

[20]   Kobayashi, T., Stang, E., Fang, K.S., de Moerloose, P., Parton, R.G. and Gruenberg, J. (1998) A Lipid Associated with the Antiphospholipid Syndrome Regulates Endosome Structure and Function. Nature, 392, 193-197.

[21]   Tatischeff, I. (2013) Assets of the Non-Pathogenic Microorganism Dictyostelium discoideum as a Model for the Study of Eukaryotic Extracellular Vesicles. F1000Research, 2, 73.

[22]   Tatischeff, I. and Alfsen, A. (2011) A New Biological Strategy for Drug Delivery: Eucaryotic Cell-Derived Nanovesicles. Journal of Biomaterials and Nanobiotechnology, 2, 494-499.

[23]   Gould, S.J. and Raposo, G. (2013) As We Wait: Coping with an Imperfect Nomenclature for Extracellular Vesicles. Journal of Extracellular Vesicles, 2, 20389.

[24]   Mathivanan, S., Ji, H. and Simpson, R.J. (2010) Exosomes: Extracellular Organelles Important in Intercellular Communication. Journal of Proteomics, 73, 1907-1920.

[25]   Heijnen, H.F., Schiel, A.E., Fijnheer, R., Geuze, H.J. and Sixma, J.J. (1999) Activated Platelets Release Two Types of Membrane Vesicles: Microvesicles by Surface Shedding and Exosomes Derived from Exocytosis of Multivesicular Bodies and Alpha-Granules. Blood, 94, 3791-3799.

[26]   Papp, K., Vegh, P., Prechl, J., Kerekes, K., Kovacs, J., Csikos, G., Bajtay, Z. and Erdei, A. (2008) B Lymphocytes and Macrophages Release Cell Membrane Deposited C3-Fragments on Exosomes with T Cell Response-Enhancing Capacity. Molecular Immunology, 45, 2343-2351.

[27]   Denzer, K., van Eijk, M., Kleijmeer, M.J., Jakobson, E., de Groot, C. and Geuze, H.J. (2000) Follicular Dendritic Cells Carry MHC Class II-Expressing Microvesicles at Their Surface. Journal of Immunology, 165, 1259-1265.

[28]   Segura, E., Amigorena, S. and Thery, C. (2005) Mature Dendritic Cells Secrete Exosomes with Strong Ability to Induce Antigen-Specific Effector Immune Responses. Blood Cells, Molecules, and Diseases, 35, 211-226.

[29]   Thery, C., Boussac, M., Veron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J. and Amigorena, S. (2001) Proteomic Analysis of Dendritic Cell-Derived Exosomes: A Secreted Subcellular Compartment Distinct from Apoptotic Vesicles. Journal of Immunology, 166, 7309-7318.

[30]   van Niel, G., Raposo, G., Candalh, C., Boussac, M., Hershberg, R., Cerf-Bensussan, N. and Heyman, M. (2001) Intestinal Epithelial Cells Secrete Exosome-Like Vesicles. Gastroenterology, 121, 337-349.

[31]   Denzer, K., Kleijmeer, M.J., Heijnen, H.F., Stoorvogel, W. and Geuze, H.J. (2000) Exosome: from Internal Vesicle of the Multivesicular Body to Intercellular Signaling Device. Journal of Cell Science, 113, 3365-3374.

[32]   Fevrier, B. and Raposo, G. (2004) Exosomes: Endosomal-Derived Vesicles Shipping Extracellular Messages. Current Opinion in Cell Biology, 16, 415-421.

[33]   Kobayashi, T., Beuchat, M.H., Chevallier, J., Makino, A., Mayran, N., Escola, J.M., Lebrand, C., Cosson, P., Kobayashi, T. and Gruenberg, J. (2002) Separation and Characterization of Late Endosomal Membrane Domains. The Journal of Biological Chemistry, 277, 32157-32164.

[34]   Kobayashi, T., Gu, F. and Gruenberg, J. (1998) Lipids, Lipid Domains and Lipid-Protein Interactions in Endocytic Membrane Traffic. Seminars in Cell and Developmental Biology, 9, 517-526.

[35]   Matsuo, H., Chevallier, J., Mayran, N., Le Blanc, I., Ferguson, C., Faure, J., Blanc, N.S., Matile, S., Dubochet, J., Sadoul, R., Parton, R.G., Vilbois, F. and Gruenberg, J. (2004) Role of LBPA and Alix in Multivesicular Liposome Formation and Endosome Organization. Science, 303, 531-534.

[36]   Stoorvogel, W., Kleijmeer, M.J., Geuze, H.J. and Raposo, G. (2002) The Biogenesis and Functions of Exosomes. Traffic, 3, 321-330.

[37]   Trams, E.G., Lauter, C.J., Salem Jr., N. and Heine, U. (1981) Exfoliation of Membrane Ecto-Enzymes in the Form of Microvesicles. Biochimica et Biophysica Acta (BBA)—Biomembranes, 645, 163-170.

[38]   Bomsel, M. and Alfsen, A. (2003) Entry of Viruses through the Epithelial Barrier: Pathogenic Trickery. Nature Reviews. Molecular Cell Biology, 4, 57-68.

[39]   Brugger, B., Glass, B., Haberkant, P., Leibrecht, I., Wieland, F.T. and Krausslich, H.G. (2006) The HIV Lipidome: A Raft with an Unusual Composition. Proceedings of the National Academy of Sciences of the USA, 103, 2641-2646.

[40]   Coutant, J., Yu, H., Clement, M.J., Alfsen, A., Toma, F., Curmi, P.A. and Bomsel, M. (2008) Both Lipid Environment and pH Are Critical for Determining Physiological Solution Structure of 3-D-Conserved Epitopes of the HIV-1 gp41-MPER Peptide P1. Faseb Journal, 22, 4338-4351.

[41]   Raulin, J. (2000) Lipids and Retroviruses. Lipids, 35, 123-130.

[42]   van Meer G. and Sprong, H. (2004) Membrane Lipids and Vesicular Traffic. Current Opinion in Cell Biology, 16,. 373-378.

[43]   van Meer, G., Voelker, D.R. and Feigenson, G.W. (2008) Membrane Lipids: Where They Are and How They Behave. Nature Reviews. Molecular Cell Biology, 9, 112-124.

[44]   Olivotto, M., Arcangeli, A., Carla, M. and Wanke, E. (1996) Electric Fields at the Plasma Membrane Level: A Neglected Element in the Mechanisms of Cell Signalling. Bioessays, 18, 495-504.

[45]   Simons, K. and Ikonen, E. (1997) Functional Rafts in Cell Membranes. Nature, 387, 569-572.

[46]   Helfrich, W. (1989) Hats and Saddles in Lipid Membranes. Liquid Crystals, 5, 1647-1658.

[47]   Hannun, Y.A. and Obeid, L.M. (2008) Principles of Bioactive Lipid Signalling: Lessons from Sphingolipids. Nature Reviews. Molecular Cell Biology, 9, 139-150.

[48]   Franks, F. and Symons, M.C.R. (1977) Solvation and Conformational Effects in Aqueous Solutions of Biopolymer Analogues. Philosophical Transactions of the Royal Society of B: Biological Sciences, 278, 33-57.

[49]   Coetzee, T., Suzuki, K. and Popko, B. (1998) New Perspectives on the Function of Myelin Galactolipids. Trends in Neurosciences, 21, 126-130.

[50]   Simons, K. and van Meer, G. (1988) Lipid Sorting in Epithelial Cells. Biochemistry, 27, 6197-6202.

[51]   Wallace, R. (1996) Microcomputational Evolution of the Neural Membrane. Nanobiology, 4, 25-38.

[52]   Wallace, R., Price, H. and Breitbeil, F. (1998) Toward a Charge-Transfer Model of Neuromolecular Computing. International Journal of Quantum Chemistry, 69, 3-10.<3::AID-QUA2>3.0.CO;2-Z

[53]   Eccles, J. (1990) A Unitary Hypothesis of Mind-Brain Interaction in the Cerebral Cortex. Proceedings of the Royal Society B: Biological Sciences, 240, 433-451.

[54]   Gershenfeld, N.A. and Chuang, I.L. (1997) Bulk Spin-Resonance Quantum Computation. Science (New York), 275, 350-356.

[55]   Hahnloser, R.H., Sarpeshkar, R., Mahowald, R.M.A., Douglas, R.J. and Seung, H.S. (2000) Digital Selection and Analogue Amplification Coexist in a Cortex-Inspired Silicon Circuit. Nature, 405, 947-951.

[56]   Diorio, C. and Rao, R.P. (2000) Computational Neuroscience: Neural Circuits in Silicon. Nature, 405, 891-892.

[57]   Maycox, P.R., Hell, J.W. and Jahn, R. (1990) Amino Acid Neurotransmission: Spotlight on Synaptic Vesicles. Trends in Neurosciences, 13, 83-87.

[58]   Wymann, M.P. and Schneiter, R. (2008) Lipid Signalling in Disease. Nature Reviews. Molecular Cell Biology, 9, 162-176.

[59]   Ikonen, E. (2008) Cellular Cholesterol Trafficking and Compartmentalization. Nature Reviews. Molecular Cell Biology, 9, 125-138.

[60]   Guillon, D. and Deschenaux, R. (2002) New Classes of Liquid-Crystalline Materials. Current Opinion in Solid State Matter Sciences, 6, 515-525.

[61]   Guillon, D., Donnio, B. and Deschenaux, R. (2009) Liquid-Crystalline Fullerodendrimers. In: Martín, N. and Giacalone F., Eds., Fullerene Polymers, Synthesis, Properties and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 247-270.

[62]   Brown, H.G. and Wolken, J.J. (1979) Structure of Liquid Crystals in Liquid Crystals and Biological Structures, Academic Press, Inc., Waltham, 1, 22-44.

[63]   Kleman, M. (1983) Point, Lines and Walls in Liquid Crystals, Magnetic Systems and Various Ordered Media. John Wiley and Sons Limited, 114-128.

[64]   Sackmann, E. and Träuble, H. (1972) Crystalline-Liquid Crystalline Phase Transition of Lipid Model Membranes. I. Use of Spin Labels and Optical Probes as Indicators of the Phase Transition. Journal of the American Chemical Society, 94, 4482-4491.

[65]   Sackmann, E. and Träuble, H. (1972) Crystalline-Liquid Crystalline Phase Transition of Lipid Model Membranes. II. Analysis of Electron Spin Resonance Spectra of Steroid Labels Incorporated into Lipid Membranes. Journal of the American Chemical Society, 94, 4492-4498.

[66]   Träuble, H. and Sackmann, E. (1972) Crystalline-liquid Crystaline Phase Transition of Lipid Model Membranes. III. Structure of a Steroid-Lecithin System below and above the Lipid-Phase Transition. Journal of the American Chemical Society, 94, 4499-4510.

[67]   Chernomordik, L., Kozlov, M.M. and Zimmerberg, J. (1995) Lipids in Biological Membrane Fusion. Journal of Membrane Biology, 146, 1-14.

[68]   Lemieux, L., McBride, A. and Hand, J.W. (1996) Calculation of Electrical Potentials on the Surface of a Realistic Head Model by Finite Differences. Physics in Medicine and Biology, 41, 1079-1091.

[69]   Casey, P.J. (1995) Protein Lipidation in Cell Signaling. Science (New York), 268, 221-225.

[70]   Bouligand, Y. (1999) Remarks on the Geometry of Micelles, Bilayers and Cell Membranes. Liquid Crystals, 26, 501-515.

[71]   Alfsen, A., de Paillerets, C., Prasad, K., Nandi, P.K., Lippoldt, R.E. and Edelhoch, H. (1984) Organization and Dynamics of Lipids in Bovine Brain Coated and Uncoated Vesicles. European Biophysical Journal, 11, 129-136.

[72]   Funamoto, S., Meili, R., Lee, S., Parry, L. and Firtel, R.A. (2002) Spatial and Temporal Regulation of
3-Phosphoinositides by PI 3-Kinase and PTEN Mediates Chemotaxis. Cell, 109, 611-623.

[73]   Klein, D.E., Stayrook, S.E., Shi, F., Narayan, K. and Lemmon, M.A. (2008) Structural Basis for EGFR Ligand Sequestration by Argos. Nature, 453, 1271-1275.