How to Introduce the Cyclic Group and Its Properties Representation with Matlab ? Thanks to Magic Using the Perfect Faro Shuffle

References

[1] [1] Ammar, M. (1998). The complete cups & balls. L&L Publishing.

[2] Assaf, S., Soundararajan, K., & Diaconis, P. (2009). Riffle shuffles of a deck with repeated cards. DMTCS Proceedings, 21st International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2009, 89-102.

[3] Boileau, N. (1740). La scolastique. Souchay, Paris.

[4] Chardiny, N., Dupin, B., & Grosgeorge, S. (2010). Utiliser les mathématiques pour créer un tour de Magie utilisant le mélange FARO. Mémoire de P.S.I, ESIEA.

[5] Diaconis, P., Graham, R. L., & Kantor, W.M. (1983). The mathematics of perfect shuffles. Advances in Applied Mathematics, 4, 175-196.
doi:10.1016/0196-8858(83)90009-X

[6] Diaconis, P. (1998). From shuffling cards to walking around the building. An introduction to markov chain theory. Proceedings of International Congress, Berlin, I, 187-204.

[7] Diaconis, P. (2003). Mathematical Developments from the Analysis of Riffle-Shuffling. In A. Fuanou and M. Liebeck (eds.), Groups Combinatorics and Geometry (pp. 73-97). N.J.: World Scientific.

[8] Diaconis, P., & Graham, R. L. (2005). The solutions to Elmsley’s Problem. Mathematics magazine. doi:10.1142/9789812564481_0005

[9] Elmsley, A. (1957). Mathématics of the weave shuffle. The Pentagram, 11, pp.70-71.

[10] Erdnase, S. W. (1902). The expert at the card table. Chicago.

[11] Gardner, M. (1958). Mathematics, magic and mystery. Dover.

[12] Gardner, M. (2005). Martin Gardner's mathematical games : the entire collection of his scientific American columns. Mathematical Association of America.

[13] Gilbreath, N. L. (1958). Magnetic colors. The Linking Ring, 38, 60.

[14] Gilbreath, N. L. (1966). Second Gilbreath Principle. Linking Ring, June 1966.

[15] Gilbreath, N. L. (1989). Magic for an Audience. series of 3 articles in Genii, Vol. 52, No. 9-10-11, March, April, May 1989.

[16] Huet, G. (1991). The Gilbreath trick: A case study in axiomatisation and proof development in the Coq Proof Assistant. Proceedings, Second Workshop on Logical Frameworks, Edinburgh.
doi:10.1017/CBO9780511569807

[17] Lachal, A. (2010). Quelques mélanges parfaits de cartes. Quadrature.

[18] Magid, A. (2005). Notices. American Mathematical Society.

[19] Mayol, H. (2000). La Magie des cordes Maestro, HBM Production.

[20] Poincaré, H. (1912). Calcul des probabilités. Rédaction de A. Quiquet. Deuxième édition, revue et augmentée par l’auteur, Gauthier-Villars, Paris.

[21] Mulcahy, C. (2003). Fitch Cheney's Five Card Trick. Mathematics Horizon, 10.

[22] Mulcahy, C. (2004). Top 5 reasons to like mathematical card tricks. 11.

[23] Mulcahy, C. (2007). An ES periment with cards. 14.

[24] Schott, P. (2010). The use of magic in optics in higher education. Creative Education, 1, 11-17.

[25] Schott, P. (2009). The use of magic in mathematics: From primary school to higher education. Proceedings of ICERI2009 Conference, Madrid, Spain, 58-70.

[26] Sheynin, O. B. (1991). H. Poincaré’s work on probability. Archive for History of Exact Sciences, 42, Berlin: Springer.