WJM  Vol.4 No.4 , April 2014
A Theoretical Analysis of Thermoelastic Damping Model in Laminated Trilayered Circular Plate Resonators
ABSTRACT

Thermoelastic damping of the axisymmetric vibration of laminated circular plate resonators is discussed in this paper. Based on the classical laminated plate theory assumptions, the governing equations of coupled thermoelastic problems are established for axisymmetric out-of-plane vibration of trilayered circular plate. The analytical expression for thermoelastic damping is obtained and the accuracy is verified through comparison with finite element analysis results. Then some simplifications are made on the theoretical model.


Cite this paper
Sun, Y. , Yang, J. and Jiang, Y. (2014) A Theoretical Analysis of Thermoelastic Damping Model in Laminated Trilayered Circular Plate Resonators. World Journal of Mechanics, 4, 102-111. doi: 10.4236/wjm.2014.44012.
References
[1]   Srikar, V.T. and Spearing, S.M. (2003) Materials Selection in Micromechanical Design: An Application of the Ashby Approach. Journal of Microelectromechanical Systems, 12, 3-10. http://dx.doi.org/10.1109/JMEMS.2002.807466

[2]   Sun, Y.X. and Tohmyoh, H. (2009) Thermoelastic Damping of the Axisymmetric Vibration of Circular Plate Resonators. Journal of Sound and Vibration, 319, 392-405. http://dx.doi.org/10.1016/j.jsv.2008.06.017

[3]   Lifshitz, R. and Roukes, M.L. (2000) Thermoelastic Damping in Micro- and Nanomechanical Systems. Physical Review B, 61, 5600-5609. http://dx.doi.org/10.1103/PhysRevB.61.5600

[4]   Srikar, V.T. and Spearing, S.M. (2003) Material Selection for Microfabricated Electrostatic Actuators. Sensors and Actuators A, 102, 29-85. http://dx.doi.org/10.1016/S0924-4247(02)00393-X

[5]   Ferguson, A.T., Li, L. and Nagaraj, V.T. (2005) Modeling and Design of Composite Free-Free Beam Piezoelectric Resonators. Sensors and Actuators A, 118, 63-69. http://dx.doi.org/10.1016/j.sna.2004.08.001

[6]   Evoy, S., Olkhovets, A. and Sekaric, L. (2000) Temperature-Dependent Internal Friction in Silicon Nanoeletromechanical Systems. Applied Physics Letters, 77, 2397-2399. http://dx.doi.org/10.1063/1.1316071

[7]   Zener, C. (1937) Internal Friction in Solids I. Theory of Internal Friction in Reeds. Physical Review, 52, 230-235.
http://dx.doi.org/10.1103/PhysRev.52.230

[8]   Sun, Y.X. and Saka, M. (2010) Thermoelastic Damping in Micro-Scale Circular Plate Resonators. Journal of Sound and Vibration, 329, 328-337. http://dx.doi.org/10.1016/j.jsv.2009.09.014

[9]   Sun, Y.X., Fang, D.N. and Soh, A.K. (2006) Thermoelastic Damping in Micro-Beam Resonators. International Journal of Solids and Structures, 43, 3213-3229. http://dx.doi.org/10.1016/j.ijsolstr.2005.08.011

[10]   Wong, S.J., Fox, C.H.J. and McWilliam, S. (2006) Thermoelastic Damping of the In-Plane Vibration of thin Silicon Rings. Journal of Sound and Vibration, 293, 266-285. http://dx.doi.org/10.1016/j.jsv.2005.09.037

[11]   Vengallatore, S. (2005) Analysis of Thermoelastic Damping in Laminated Composite Micromechanical Beam Resonators. Journal of Micromechanics and Microengineering, 15, 2398-2404.
http://dx.doi.org/10.1088/0960-1317/15/12/023

[12]   Bao, G. and Jiang, W. (1998) A Heat Transfer Analysis for Quartz Microresonator IR Sensors. International Journal of Solids and Structures, 35, 3635-3653. http://dx.doi.org/10.1016/S0020-7683(97)00235-7

[13]   Huang, X.M.H., Zorman, C.A. and Mehregany, M. (2003) Nanodevice Motion at Microwave Frequencies. Nature, 421, 496. http://dx.doi.org/10.1038/421496a

[14]   Bishop, J.E. and Kinra, V.K. (1997) Elastothermodynamic Damping in Laminated Composites. International Journal of Solids and Structures, 34, 1075-1092. http://dx.doi.org/10.1016/S0020-7683(96)00085-6

[15]   Prabhakar, S. and Vengallatore, S. (2007) Thermoelsatic Damping in Bilayered Micromechanical Beam Resonators. Journal of Micromechanics and Microengineering, 17, 532-538. http://dx.doi.org/10.1088/0960-1317/17/3/016

[16]   Berry, B.S. (1995) Precise Investigation of the Theory of Damping by Transverse Thermal Currents. Journal of Applied Physics, 26, 1221-1224. http://dx.doi.org/10.1063/1.1721877

[17]   Ozisik, M. (1980) Heat Conduction. John Wiley & Sons, New York.

[18]   Ashby, M.F. (2001) Materials Selection in Mechanical Design. Butterworth Heinemann, Oxford.

 
 
Top