OJMS  Vol.4 No.2 , April 2014
Temporal Variations of the Chemical Composition of Three Seaweeds in Two Tropical Coastal Environments
ABSTRACT

The seaweeds Chaetomorpha antennina, Gymnogongrus griffithsiae and Ulva fasciata were studied regarding tissue concentrations of total nitrogen, total phosphorus, total protein, hydrosoluble protein, total carbohydrate, chlorophyll a and total carotenoid throughout a 39-month survey in two coastal environments of Rio de Janeiro State, Brazil. One of the sites (Itapuca Stone) has high concentrations of dissolved nutrients and an intense long-term process of cultural eutrophication; the second site (Bananal Inlet) is thought to have lower concentrations of dissolved nutrients and no relevant anthropic impact. Seaweeds experienced changes in the concentrations of the substances in the thalli; however they did not show any cyclic seasonal pattern, except for pigments, with lower values in summer in both sites. The differences found for each species in each sampling at the sites were small (e.g. U. fasciata, more total nitrogen at Itapuca Stone) or absent (e.g. C. antennina, no significant differences for hydrosoluble protein in the sites). Differences in the concentrations of dissolved nutrients in the sites did not generate contrasting chemical profiles in the seaweeds. There is no evidence of nitrogen- or phosphorus-limitation in any season. It is presumable that the concentrations of dissolved nutrients at the nutrient-poorer site are sufficient to generate high concentrations of the substances in the thalli of the species tested, similar to the concentrations measured in the eutrophic site. Experimental data are needed to elucidate the factors that promote the success of the species tested under contrasting nutrient availability and environmental disturbance.


Cite this paper
Nascimento, A. , Coelho-Gomes, C. , Barbarino, E. and Lourenço, S. (2014) Temporal Variations of the Chemical Composition of Three Seaweeds in Two Tropical Coastal Environments. Open Journal of Marine Science, 4, 118-139. doi: 10.4236/ojms.2014.42013.
References
[1]   Lapointe, B.E. and Duke, S.C. (1984) Biochemical Strategies for Growth of Gracilaria tikvahiae (Rhodophyta) in Relation to Light Intensity and Nitrogen Availability. Journal of Phycology, 20, 488-495.
http://dx.doi.org/10.1111/j.0022-3646.1984.00488.x

[2]   Valiela, I., McClelland, J., Hauxwell, J., Behr, P.J. and Foreman, K. (1997) Macroalgal Blooms in Shallow Estuaries: Controls and Ecophysiological and Ecosystem Consequences. Limnology and Oceanography, 42, 1105-1118.
http://dx.doi.org/10.4319/lo.1997.42.5_part_2.1105

[3]   Rivers, J.S. and Peckol, P. (1995) Interactive Effects of Nitrogen and Dissolved Inorganic Carbon on Photosynthesis, Growth, and Ammonium Uptake of the Macroalgae Cladophora vagabunda and Gracilaria tikvahiae. Marine Biology, 121, 747-753. http://dx.doi.org/10.1007/BF00349311

[4]   Fong, P., Donohoe, R.M. and Zedler, J.B. (1994) Nutrient Concentration in Tissue of the Macroalga Enteromorpha as a Function of Nutrient History: An Experimental Evaluation Using Field Microcosms. Marine Ecology Progress Series, 106, 273-281. http://dx.doi.org/10.3354/meps106273

[5]   Wheeler, P.A. and Bjornsater, B.R. (1992) Seasonal Fluctuations in Tissue Nitrogen, Phosphorus, and N:P for Five Macroalgal Species Common to the Pacific Northwest Coast. Journal of Phycology, 28, 1-6.
http://dx.doi.org/10.1111/j.0022-3646.1992.00001.x

[6]   Villares, R. and Carballeira, A. (2003) Seasonal Variation in the Concentrations of Nutrients in Two Green Macroalgae and Nutrient Levels in Sediments in the Rias Baixas (NW Spain). Estuarine, Coastal and Shelf Science, 58, 887-900. http://dx.doi.org/10.1016/j.ecss.2003.07.004

[7]   Lobban, C.S. and Harrison, P.H. (1994) Seaweed Ecology and Physiology. Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9780511626210

[8]   Peckol, P., DeMeo-Andersen, B., Rivers, J., Valiela, I., Maldonado, M. and Yates, J. (1994) Growth, Nutrient Uptake Capacities and Tissue Constituents of the Macroalgae Cladophora vagabunda and Gracilaria tikvahiae Related to Site-Specific Nitrogen Loading Rates. Marine Biology, 121, 175-185. http://dx.doi.org/10.1007/BF00349487

[9]   Kamer, K., Fong, P., Kennison, R. and Schiff, K. (2004) Nutrient Limitation of the Macroalga Enteromorpha intestinalis Collected along a Resource Gradient in a Highly Eutrophic Estuary. Estuaries, 27, 201-208.
http://dx.doi.org/10.1007/BF02803377

[10]   Turpin, D.H. (1991) Effects of Inorganic N Availability on Algal Photosynthesis and Carbon Metabolism. Journal of Phycology, 27, 14-20. http://dx.doi.org/10.1111/j.0022-3646.1991.00014.x

[11]   Bird, K.T., Habig, C. and DeBusk, T. (1982) Nitrogen Allocation and Storage Patterns in Gracilaria tikvahiae (Rhodophyta). Journal of Phycology, 18, 344-348. http://dx.doi.org/10.1111/j.1529-8817.1982.tb03194.x

[12]   Lourenco, S.O., Barbarino, E., Lavín, P.L., Marquez, U.M.L. and Aidar, E. (2004) Distribution of Intracellular Nitrogen in Marine Microalgae: Calculation of New Nitrogen-to-Protein Conversion Factors. European Journal Phycology, 39, 17-32. http://dx.doi.org/10.1080/0967026032000157156

[13]   Dere, S., Dalkiran, N., Karacaoglu, D., Yildiz, G. and Dere, E. (2003) The Determination of Total Protein, Total Soluble Carbohydrate and Pigment Contents of Some Gemlik-Karacaali (Bursa) and Erdek-Ormanli (Balikesir) in the Sea Marmara, Turkey. Oceanologia, 45, 453-471.

[14]   Aguilera, J., Jiménez, C., Figueroa, F.L., Lebert, M. and Hader, D.P. (1999) Effect of Ultraviolet Radiation on Thallus Absorption and Photosynthetic Pigments in the Red Alga Porphyra umbilicalis. Journal of Photochemistry and Photobiology B: Biology, 48, 75-82. http://dx.doi.org/10.1016/S1011-1344(99)00015-9

[15]   Lourenco, S.O., Barbarino, E., Nascimento, A. and Paranhos, R. (2005) Seasonal Variations in Tissue Nitrogen and Phosphorus of Eight Macroalgae from a Tropical Hypersaline Coastal Environment. Cryptogamie Algologie, 26, 355-371.

[16]   Aitken, K.A., Melton, L.D. and Brown, M.T. (1991) Seasonal Protein Variation in the New Zealand Seaweeds Porphyra columbina Mont. and Porphyra subtumens J. Ag. (Rhodophyceae). Japanese Journal of Phycology, 39, 307-317.

[17]   Henley, W.J. and Dunton, K.H. (1995) A Seasonal Comparison of Carbon, Nitrogen, and Pigment Content in Laminaria solidungula and L. saccharina (Phaeophyta) in the Alaskan Artic. Journal of Phycology, 31, 325-331.
http://dx.doi.org/10.1111/j.0022-3646.1995.00325.x

[18]   Korbee, N., Figueroa, F.L. and Aguilera, J. (2005) Effect of Light Quality on the Accumulation of Photosynthetic Pigments, Proteins and Mycosporine-Like Amino Acids in the Red Alga Porphyra leucosticta (Bangiales, Rhodophyta). Journal of Photochemistry and Photobiology B: Biology, 80, 71-78.
http://dx.doi.org/10.1016/j.jphotobiol.2005.03.002

[19]   Tabarsa, M., Rezaei, M., Ramezanpour, Z., Waaland, J.R. and Rabiei, R. (2012) Fatty Acids, Amino Acids, Mineral Contents, and Proximate Composition of Some Brown Seaweeds. Journal of Phycology, 48, 285-292.
http://dx.doi.org/10.1111/j.1529-8817.2012.01122.x

[20]   Madden, M., Mitra, M., Ruby, D. and Schwarz, J. (2012) Seasonality of Selected Nutritional Constituents of Edible Delmarva Seaweeds. Journal of Phycology, 48, 1289-1298. http://dx.doi.org/10.1111/j.1529-8817.2012.01207.x

[21]   Polat, S. and Ozogul, Y. (2013) Seasonal Proximate and Fatty Acid Variations of Some Seaweeds from the Northeastern Mediterranean Coast. Oceanologia, 55, 375-391. http://dx.doi.org/10.5697/oc.55-2.375

[22]   Schaffelke, B. (1999) Short-Term Nutrient Pulses as Tools to Assess Responses of Coral Reef Macroalgae to Enhanced Nutrient Availability. Marine Ecology Progress Series, 182, 305-310. http://dx.doi.org/10.3354/meps182305

[23]   Wong, K.H. and Cheung, C.K. (2001) Nutritional Evaluation of Some Subtropical Red and Green Seaweeds Part II. In Vitro Protein Digestibility and Amino Acid Profiles of Protein Concentrates. Food Chemistry, 72, 11-17.
http://dx.doi.org/10.1016/S0308-8146(00)00176-X

[24]   Pádua, M., Fontoura, P.S.G. and Mathias, A.L. (2004) Chemical Composition of Ulvaria oxysperma (Kützing) Bliding, Ulva lactuca (Linnaeus) and Ulva fasciata (Delile). Brazilian Archives of Biology and Technology, 47, 49-55.
http://dx.doi.org/10.1590/S1516-89132004000100007

[25]   Devi, G.K., Thirumaran, G., Manivannan, K. and Anantharaman, P. (2009) Element Composition of Certain Seaweeds from Gulf of Mannar Marine Biosphere Reserve; Southeast Coast of India. World Journal of Dairy & Food Sciences, 4, 46-55.

[26]   Diniz, G.S., Barbarino, E., Oiano-Neto, J., Pacheco, S. and Lourenco, S.O. (2011) Gross Chemical Profile and Calculation of Nitrogen-to-Protein Conversion Factors for Five Tropical Seaweeds. American Journal of Plant Sciences, 2, 287296. http://dx.doi.org/10.4236/ajps.2011.23032

[27]   Siddique, M.A.M., Aktar, M. and Khatib, M.A.M. (2013) Proximate Chemical Composition and Amino Acid Profile of Two Red Seaweeds (Hypnea pannosa and Hypnea musciformis) Collected from St. Martin’s Island, Bangladesh. Journal of Fisheries Sciences, 7, 178-186.

[28]   Lourenco, S.O., Barbarino, E., Nascimento, A., Freitas, J. and Diniz, G. (2006) Tissue Nitrogen and Phosphorus in Seaweeds in a Tropical Eutrophic Environment: What a Long-Term Study Tells Us. Journal of Applied Phycology, 18, 389-398. http://dx.doi.org/10.1007/s10811-006-9035-9

[29]   Mayr, L.M., Tenenbaum, D.R., Villac, M.C., Paranhos, R., Nogueira, C.R., Bonecker, S.L.C. and Bonecker, A.C. (1989) Hydrological Characterization of Guanabara Bay. In: Magoo, O.T. and Neves, C., Eds., Coastlines of Brazil, American Society of Civil Engineering, New York, 129-139.

[30]   Valentin, J.L., Tenenbaum, D.R., Bonecker, A.C.T., Bonecker, S.L.C., Nogueira, C.R. and Villac, M.C. (1999) O Sistema Planctonico da Baía de Guanabara: Síntese do Conhecimento. Oecologia Brasiliensis, 7, 35-59.
http://dx.doi.org/10.4257/oeco.1999.0701.02

[31]   Wynne, M.J. (1998) A Checklist of Benthic Marine Algae of the Tropical and Subtropical Western Atlantic: First Revision. In: Nova Hedwigia, Suppl. 116, J. Cramer in der Gebr. Borntraeger Verlagsbuchhandlung, Stuttgart, 1-155.

[32]   Hach, C.C., Bowden, B.K., Kopelove, A.B. and Brayton, S.T. (1987) More Powerful Peroxide Kjeldahl Digestion Method. Journal of the Association of Official Analytical Chemistry, 70, 783-787.

[33]   Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.L. (1951) Protein Measurement with the Folin Phenol Reagent. The Journal of Biological Chemistry, 193, 265-275.

[34]   Lourenco, S.O., Barbarino, E., De-Paula, J.C., Da S. Pereira, L.O. and Lanfer Marquez, U.M. (2002) Amino Acid Composition, Protein Content, and Calculation of Nitrogen-to-Protein Conversion Factors for Nineteen Tropical Seaweeds. Phycological Research, 50, 233-241. http://dx.doi.org/10.1111/j.1440-1835.2002.tb00156.x

[35]   Myklestad, S. and Haug, A. (1972) Production of Carbohydrates by the Marine Diatom Chaetoceros affinis var. willie (Gran) Hustedt. I. Effect of the Concentration of Nutrients in the Culture Medium. Journal of Experimental of Marine Biology and Ecology, 9, 125-136. http://dx.doi.org/10.1016/0022-0981(72)90041-X

[36]   DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28, 350-356. http://dx.doi.org/10.1021/ac60111a017

[37]   Lorenzen, C.J. (1967) Determination of Chlorophyll and Pheopigments: Spectrophotometric Equations. Limnology and Oceanography, 12, 343-346. http://dx.doi.org/10.4319/lo.1967.12.2.0343

[38]   Strickland, J.D.H. and Parsons, T.R. (1968) A Practical Handbook of Seawater Analysis. Bulletin of Fisheries Research Board of Canada, 167, 1-311.

[39]   Parsons, T.R., Maita, Y. and Lalli, C.M. (1984) A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford.

[40]   Aminot, A. and Chaussepied, M. (1983) Manuel des Analyses Chimiques en Milieu Marin. CNEXO, Brest.

[41]   Grasshoff, K., Ehrhardt, M. and Kremling, K. (1983) Methods of Seawater Analysis. Verlag Chemie, Weinheim.

[42]   Zar, J.H. (1996) Biostatistical Analysis. 3rd Edition, Prentice Hall, Inc., Upper Saddle River.

[43]   Shin, H.W., Sidharthan, M. and Young, K.S. (2002) Forest Fire Ash Impact on Microand Macroalgae in the Receiving Waters of the East Coast of South Korea. Marine Pollution Bulletin, 45, 203-209.
http://dx.doi.org/10.1016/S0025-326X(02)00156-X

[44]   Kjerfve, B., Ribeiro, C.H.A., Dias, G.T.M., Filippo, A.M. and Quaresma, V.S. (1997) Oceanographic Characteristics of an Impacted Coastal Bay: Baía de Guanabara, Rio de Janeiro, Brazil. Continental Shelf Research, 17, 1609-1643.
http://dx.doi.org/10.1016/S0278-4343(97)00028-9

[45]   Taouil, A. and Yoneshigue-Valentin, Y. (2002) Alteracoes na Composicao Florística das Algas da Praia de Boa Viagem (Niterói, RJ). Revista Brasileira de Botanica, 25, 405-412.
http://dx.doi.org/10.1590/S0100-84042002012000004

[46]   Martínez-Aragón, J.F., Hernández, I., Pérez-Lloréns, J.L., Vázquez, R. and Vergara, J.J. (2002) Biofiltering Efficiency in Removal of Dissolved Nutrients by Three Species of Estuarine Macroalgae Cultivated with Sea Bass (Dicentrarchus labrax) Waste Waters 1.Phosphate. Journal of Applied Phycology, 14, 365-374.
http://dx.doi.org/10.1023/A:1022134701273

[47]   Redfield, A.C. (1958) The Biological Control of Chemical Factors in the Environment. American Scientist, 46, 205-221.

[48]   Redfield, A.C., Ketchum, B.H. and Richards, F.A. (1963) The Influence of Organisms on the Chemical Composition of Seawater. In: Hill, M.N., Ed., The Sea, Interscience, New York, 26-77.

[49]   Aidar, E., Gaeta, S.A., Giansella-Galvao, S., Kutner, M.B.B. and Teixeira, C. (1993) Ecossistema Costeiro Subtropical: Nutrientes Dissolvidos, Fitoplancton e Clorofila-a e suas Relacoes com as Condicoes Oceanográficas na Regiao de Ubatuba, SP. Instituto Oceanográfico da USP, 10, 9-43.

[50]   Fong, P., Zedler, J.B. and Donohoe, R.M. (1993) Nitrogen vs. Phosphorus Limitation of Algal Biomass in Shallow Coastal Lagoons. Limnology and Oceanography, 38, 906-923. http://dx.doi.org/10.4319/lo.1993.38.5.0906

[51]   Teixeira, V.L., Pereira, R.C., Marques Jr., A.N., Leitao Filho, C.M. and Silva, C.A.R. (1987) Seasonal Variations in Infralitoral Seaweed Communities under a Pollution Gradient in Baía de Guanabara, Rio de Janeiro (Brazil). Ciência e Cultura, 39, 423-428.

[52]   Diniz, G.S., Barbarino, E. and Lourenco, S.O. (2012) On the Chemical Profile of Marine Organisms from Coastal Subtropical Environments: Gross Composition and Nitrogen-to-Protein Conversion Factors. In: Marcelli, M., Ed., Oceanography, InTech, Rijeka, 297-320. http://dx.doi.org/10.5772/29294

[53]   Fong, P., Boyer, K.E., Kamer, K. and Boyle, K.A. (2003) Influence of Initial Tissue Nutrient Status of Tropical Marine Algae on Response to Nitrogen and Phosphorus Additions. Marine Ecology Progress Series, 262, 111-123.
http://dx.doi.org/10.3354/meps262111

[54]   Hwang, R.L., Tsai, C.C. and Lee, T.M. (2004) Assessment of Temperature and Nutrient Limitation on Seasonal Dynamics among Species of Sargassum from a Coral Reef in Southern Taiwan. Journal of Phycology, 40, 463-473.
http://dx.doi.org/10.1111/j.1529-8817.2004.03086.x

[55]   Pedersen, M.F. and Borum, J. (1996) Nutrient Control of Algal Growth in Estuarine Waters. Nutrient Limitation and the Importance of Nitrogen Requirements and Nitrogen Storage among Phytoplankton and Species of Macroalgae. Marine Ecology Progress Series, 142, 261-272. http://dx.doi.org/10.3354/meps142261

[56]   Kamer, K. and Fong, P. (2001) Nutrient Enrichment Ameliorates the Negative Effects of Reduced Salinity on the Green Macroalga Enteromorpha intestinalis. Marine Ecology Progress Series, 218, 87-93.
http://dx.doi.org/10.3354/meps218087

[57]   Gordon, D.M., Birch, P.B. and McComb, A.J. (1981) Effects of Inorganic Phosphorus and Nitrogen on the Growth of an Estuarine Cladophora in Culture. Botanica Marina, 24, 93-106. http://dx.doi.org/10.1515/botm.1981.24.2.93

[58]   Hanisak, M.D. (1979) Nitrogen Limitation of Codium fragile ssp. tomentosoides as Determined by Tissue Analysis. Marine Biology, 50, 333-337. http://dx.doi.org/10.1007/BF00387010

[59]   Hanisak, M.D. (1993) Nitrogen Release from Decomposing Seaweeds: Species and Temperature Effects. Journal of Applied Phycology, 5, 175-181. http://dx.doi.org/10.1007/BF00004014

[60]   Menéndez, M., Martinez, M. and Comín, F.A. (2001) A Comparative Study of the Effect of pH and Inorganic Carbon Resources on the Photosynthesis of Three Floating Macroalgae Species of a Mediterranean Coastal Lagoon. Journal of Experimental Marine Biology and Ecology, 256, 123-136. http://dx.doi.org/10.1016/S0022-0981(00)00313-0

[61]   Bjornsater, B.R. and Wheeler, P.A. (1990) Effect of Nitrogen and Phosphorus Supply on Growth and Tissue Composition of Ulva fenestrata and Enteromorpha intestinalis (Ulvales, Chlorophyta). Journal of Phycology, 26, 603-611.
http://dx.doi.org/10.1111/j.0022-3646.1990.00603.x

[62]   Gressler, V., Yokoya, N.S., Fujii, M.T., Colepicolo, P., Mancini Filho, J., Torres, R.P. and Pinto, E. (2010) Lipid, Fatty Acid, Protein, Amino Acid and Ash Contents in Four Brazilian Red Algae Species. Food Chemistry, 120, 585-590.
http://dx.doi.org/10.1016/j.foodchem.2009.10.028

[63]   Peters, K.J., Amsler, C.D., Amsler, M.O., McClintock, J.B., Dunbar, R.B. and Baker, J. (2005) A Comparative Analysis of the Nutritional and Elemental Composition of Macroalgae from the Western Antarctic Peninsula. Phycologia, 44, 453-463. http://dx.doi.org/10.2216/0031-8884(2005)44[453:ACAOTN]2.0.CO;2

[64]   Dawcznski, C., Schubert, R. and Jahreis, G. (2007) Amino Acids, Fatty Acids, and Dietary Fibre in Edible Seaweed Products. Food Chemistry, 103, 891-899. http://dx.doi.org/10.1016/j.foodchem.2006.09.041

[65]   Polat, S. and Ozogul, Y. (2008) Biochemical Composition of Some Red and Brown Macro Algae from the Northeastern Mediterranean Sea. International Journal of Food Sciences and Nutrition, 59, 566-572.
http://dx.doi.org/10.1080/09637480701446524

[66]   Prabhasankar, P., Ganesan, P., Bhaskar, N., Hirose, A., Stephen, N., Gowda, L.R., Hosokawa, M. and Miyashita, K. (2009) Edible Japanese Seaweed, Wakame (Undaria pinnatifida) as an Ingredient in Pasta: Chemical, Functional and Structural Evaluation. Food Chemistry, 115, 501-508. http://dx.doi.org/10.1016/j.foodchem.2008.12.047

[67]   Matanjun, P., Mohamed, S., Mustapha, N.M. and Muhammad, K. (2009) Nutrient Content of Tropical Edible Seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. Journal of Applied Phycology, 21, 75-80.
http://dx.doi.org/10.1007/s10811-008-9326-4

[68]   Fleurence, J., Morancais, M., Dumay, J., Decottignies, P., Turpin, V., Munier, M., Garcia-Bueno, N. and Jaouen, P. (2012) What Are the Prospects for Using Seaweed in Human Nutrition and for Marine Animals Raised through Aquaculture? Trends in Food Science & Technology, 27, 57-61.http://dx.doi.org/10.1016/j.tifs.2012.03.004

[69]   Munier, M., Dumay, J., Morancais, M., Jaouen, P. and Fleurence, J. (2013) Variation in the Biochemical Composition of the Edible Seaweed Grateloupia turuturu Yamada Harvested from Two Sampling Sites on the Brittany Coast (France): The Influence of Storage Method on the Extraction of the Seaweed Pigment R-Phycoerythrin. Journal of Chemistry, 2013, Article ID: 568548, 8 pages. http://dx.doi.org/10.1155/2013/568548

[70]   Marinho-Soriano, E., Fonseca, P.C., Carneiro, M.A.A. and Moreira, W.S.C. (2006) Seasonal Variation in the Chemical Composition of Two Tropical Seaweeds. Bioresource Technology, 97, 2402-2406.
http://dx.doi.org/10.1016/j.biortech.2005.10.014

[71]   Yu, J. and Yang, Y.F. (2008) Physiological and Biochemical Response of Seaweed Gracilaria lemaneiformis to Concentration Changes of N and P. Journal of Experimental Marine Biology and Ecology, 367, 142-148.
http://dx.doi.org/10.1016/j.jembe.2008.09.009

[72]   Maurin, C. and Le Gal, Y. (1997) Glutamine Synthetase in the Marine Coccolithophorid Emiliania huxleyi (Prymnesiophyceae): Regulation of Activity in Relation to Light and Nitrogen Availability. Plant Science, 122, 61-69.
http://dx.doi.org/10.1016/S0168-9452(96)04539-6

[73]   Perfeto, P.N.M. (1998) Relation between Chemical Composition of Grateloupia doryphora (Montagne) Howe, Gymnogongrus griffithsiae (Turner) Martius, and Abiotic Parameters. Acta Botanica Brasilica, 12, 77-88.

[74]   Renaud, S.M. and Luong-Van, J.T. (2006) Seasonal Variation in the Chemical Composition of Tropical Australian Marine Macroalgae. Journal of Applied Phycology, 18, 381-387. http://dx.doi.org/10.1007/s10811-006-9034-x

[75]   Khairy, H.M. and El-Shafay, S.M. (2013) Seasonal Variations in the Biochemical Composition of Some Common Seaweed Species from the Coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia, 55, 435-452.
http://dx.doi.org/10.5697/oc.55-2.435

[76]   Fleurence, J. (1999) Seaweed Proteins: Biochemical, Nutritional Aspects and Potential Uses. Trends in Food Science & Technology, 10, 25-28. http://dx.doi.org/10.1016/S0924-2244(99)00015-1

[77]   Rowan, K.S. (1989) Photosynthetic Pigments of Algae. Cambridge University Press, New York.

[78]   Payri, C.E., Maritorena, S., Bizeau, C.E. and Rodière, M. (2001) Photoacclimation in the Tropical Coralline Alga Hydrolithon onkodes (Rhodophyta, Corallinaceae) from a French Polynesian Reef. Journal of Phycology, 37, 223-234.
http://dx.doi.org/10.1046/j.1529-8817.2001.037002223.x

 
 
Top