OJMS  Vol.4 No.2 , April 2014
Wind-Driven Dynamics of Beach-Cast Wrack in a Tide-Free System
Abstract: Whereas wrack dynamics on tidally influenced beaches have been studied to some detail, essentially nothing is known about how drift lines in tide-free coastal systems vary in space and time. We provide evidence for high spatial and temporal dynamics of beach-cast wrack on a sand beach in the Western Baltic Sea. Over the course of one year, the amount of weekly deposited macrophyte wrack fluctuated from zero to 3000 g·m-1 shoreline. Wrack mostly accumulated just above the waterline. Part of the beach-cast wrack is frequently re-suspended into coastal water upon extreme high water level events, or wrack patches are translocated landwards by wind-driven changes in water level or along the shoreline by winds. Consequently, the deposited wrack does accumulate, but a steady-state of ca 400 g·m-1 builds up within 2 - 3 weeks. Eelgrass wrack buried in sand decomposed almost twice as fast as on top of the sand or re-suspended in water. Fragmentation of leaves promoted decomposition only when wrack remained on the sand surface. The spatial and temporal distribution of this valuable source of organic matter is unpredictable and depends on wind and wind-driven waves.
Cite this paper: Hammann, S. and Zimmer, M. (2014) Wind-Driven Dynamics of Beach-Cast Wrack in a Tide-Free System. Open Journal of Marine Science, 4, 68-79. doi: 10.4236/ojms.2014.42009.

[1]   Norkko, J., Bonsdorff, E. and Norkko, A. (2000) Drifting Algal Mats as Alternative Habitat for Benthic Invertebrates: Species Specific Responses to a Transient Resource. Journal of Experimental Marine Biology and Ecology, 248, 79-104.

[2]   Pennings, S.C., Carefoot, T.H., Zimmer, M., Danko, J.P. and Ziegler, A. (2000) Feeding Preferences of Supralittoral Isopods and Amphipods. Canadian Journal of Zoology, 78, 1918-1929.

[3]   Colombini, I., Aloia, A., Fallaci, M., Pezzoli, G. and Chelazzi, L. (2000) Temporal and Spatial Use of Stranded Wrack by the Macrofauna of a Tropical Sandy Beach. Marine Biology, 136, 531-541.

[4]   Orr, M., Zimmer, M., Mews, M. and Jelinski, D.E. (2005) Wrack Deposition on Different Beach Types: Spatial and Temporal Variation in the Pattern of Subsidy. Ecology, 86, 1496-1507.

[5]   Mews, M., Zimmer, M. and Jelinski, D.E. (2006) Species-Specific Decomposition Rates of Beach-Cast Wrack in Barkley Sound, British Columbia, Canada. Marine Ecology Progress Series, 328, 155-160.

[6]   Lewis, T.L., Mews, M., Jelinski, D.E. and Zimmer, M. (2007) Detrital Subsidy to the Supratidal Zone Provides Feeding Habitat for Intertidal Crabs. Estuaries and Coasts, 30, 451-458.

[7]   Rodil, I., Olabarria, C., Lastra, M. and Lopez, J. (2008) Differential Effects of Native and Invasive Algal Wrack on Macrofaunal Assemblages Inhabiting Exposed Sandy Beaches. Journal of Experimental Marine Biology and Ecology, 358, 1-13.

[8]   Dolch, T. (2002) Die Auswirkungen der Wasserqualitat auf den Tourismus am Beispiel des Oderastuars. Diplomarbeit, Geographisches Institut der Universitat Bonn & Institut für Ostseeforschung Warnemünde.

[9]   Koerth, R. and Sterr, H. (2012) Ostseegemeinden im Klimawandel. RADOST-Berichtsreihe, 12, 1-20.

[10]   Valiela, I., Collins, G., Kremer, J., Lajtha, K., Geist, M., Seely, B., Brawley, J. and Sham, C.H. (1997) Nitrogen Loading from Coastal Watersheds to Receiving Estuaries: New Method and Application. Ecological Applications, 7, 358-380.[0358:NLFCWT]2.0.CO;2

[11]   Domínguez, H. and Belpaeme, K. (2006) Manual Beach Cleaning in Belgium: An Ecological Alternative. In: Tubielewicz, A., Ed., Living Marine Resources and Coastal Habitats, EuroCoast, Littoral, 131-135.

[12]   Pelletier, A.J.D., Jelinski, D.E., Treplin, M. and Zimmer, M. (2011) Colonisation of Beach-Cast Macrophyte Wrack Patches by Talitrid Amphipods: A Primer. Estuaries & Coasts, 34, 863-871.

[13]   Thalmann, A. (1968) Zur Methodik der Bestimmung der Dehydrogenaseaktivitat im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtschaftliche Forschung, 21, 249-258.

[14]   Milligan, K.L.D. and DeWreede, R.E. (2000) Variations in Holdfast Attachment Mechanics with Developmental Stage, Substratum-Type, Season, and Wave-Exposure for the Intertidal Kelp Species Hedophyllum sessile (C. Agardh) Setchell. Journal of Experimental Marine Biology and Ecology, 254, 189-209.

[15]   Kirkman, H. and Kendrick, G.A. (1997) Ecological Significance and Commercial Harvesting of Drifting and BeachCast Macro-Algae and Seagrasses in Australia: A Review. Journal of Applied Phycology, 9, 311-326.

[16]   Ochieng, C.A. and Erftemeijer, P.L.A. (1999) Accumulation of Seagrass Beach Cast along the Kenyan Coast: A Quantitative Assessment. Aquatic Botany, 65, 221-238.

[17]   Behbehani, M. and Croker, R. (1982) Ecology of Beach Wrack in Northern New England with Special Reference to Orchestia platensis. Estuarine, Coastal and Shelf Science, 15, 611-620.

[18]   Ugolini, A., Felicioni, S., Ruffo, S. and Cipriani, L. (1995) Distribution of Talorchestia ugolinii and Other Sandhoppers in Corsica. Bolletino Zoologico, 62, 291-296.

[19]   Schrader, E. (1990) Dünenentwicklung im Raume des Bottsandes-Kieler Aubenforde. Schriften des Naturwissenschaftlichen Vereins Schleswig-Holsteins, 60, 29-69.

[20]   Jedrzejczak, M.F. (2002) Stranded Zostera marina L. vs Wrack Fauna Community Interactions on a Baltic Sandy Beach (Hel, Poland): A Short-Term Pilot Study. Part II. Driftline Effects of Succession Changes and Colonisation by Beach Fauna. Oceanologia, 44, 367-387.

[21]   Treplin, M. and Zimmer, M. (2012) Drowned or Dry: A Cross-Habitat Comparison of Detrital Breakdown Processes. Ecosystems, 15, 477-491.