ABC  Vol.4 No.2 , April 2014
Suppression of N-Methyl-N-Nitrosourea-Induced Retinal Damage in Mice by Oligonol, an Oligomerized Polyphenol Formulation
Abstract: Oligonol is a lychee fruit-derived functional food that contains oligomerized polyphenol compounds. Oligonol exhibits a number of beneficial biological effects, primarily due to its antioxidant activity. Retinitis pigmentosa (RP) is an inherited chronic degenerative disease affecting retinal photoreceptor cells. There is currently no effective therapy capable of stopping or reversing the progression of the disease. In RP, apoptosis of photoreceptor cells resulting from oxidative damage is considered to be the final common pathway. In this report, we present an evaluation of the suppressive activity of Oligonol against N-methyl-N-nitrosourea (MNU)-induced retinal damage in mice, which is a commonly used animal model of RP. Both intraperitoneal and oral administration of Oligonol reduced the loss of photoreceptor cells 7 days after MNU injection, as evaluated by histological staining. Photoreceptor cells derived from MNU-treated mice exhibited increased TUNEL-positive staining, suggesting increased DNA fragmentation, a hallmark of apoptosis. Oligonol treatment reduced the number of TUNEL-positive cells. Additionally, Oligonol suppressed MNU-induced retinal production of 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative stress. Moreover, Oligonol attenuated the MNU-induced decrease in the visual activity of mice, as evaluated by the visual cliff test. Oligonol, therefore, effectively suppresses NMU-induced retinal degeneration.
Cite this paper: Kisugi, J. , Nasui, M. , Wakame, K. , Takanari, J. , Yamazaki, M. and Yui, S. (2014) Suppression of N-Methyl-N-Nitrosourea-Induced Retinal Damage in Mice by Oligonol, an Oligomerized Polyphenol Formulation. Advances in Biological Chemistry, 4, 138-147. doi: 10.4236/abc.2014.42018.

[1]   Hamel, C. (2006) Retinitis Pigmentosa. Orphanet Journal of Rare Diseases, 1, 40.

[2]   Daiger, S.P., Sullivan, L.S. and Bowne, S. (2013) Genes and Mutations Causing Retinitis Pigmentosa. Journal of Clinical Genetics, 84, 132-141.

[3]   Musarella, M.A. and Macdonald, I.M. (2011) Current Concepts in the Treatment of Retinitis Pigmentosa. Journal of Ophthalmology, 2011, Article ID: 753547.

[4]   Sahni, J.N., Angi, M., Irigoyen, C., Semeraro, F., Romano, M.R. and Parmeggiani, F. (2011) Therapeutic Challenges to Retinitis Pigmentosa: From Neuroprotection to Gene Therapy. Current Genomics, 12, 276-284.

[5]   Ramsden, C.M., Powner, M.B., Carr, A.J., Smart, M.J., Da Cruz, L. and Coffey, P.J. (2013) Stem Cells in Retinal Regeneration: Past, Present and Future. Development, 140, 2576-2585.

[6]   Berson, E.L., Rosner, B., Sandberg, M.A., Weigel-DiFranco, C., Moser, A., Brockhurst, R.J., Hayes, K.C., Johnson, C.A., Anderson, E.J., Gaudio, A.R., Willett, W.C. and Schaefer E.J. (2004) Further Evaluation of Docosahexaenoic Acid in Patients with Retinitis Pigmentosa Receiving Vitamin A Treatment: Subgroup Analyses. Archives of Ophthalmology, 122, 1306-1314.

[7]   Berson, E.L., Rosner, B., Sandberg, M.A., Weigel-DiFranco, C., Brockhurst, R.J., Hayes, K.C., Johnson, E.J., Anderson, E.J., Johnson, C.A., Gaudio, A.R., Willett, W.C. and Schaefer, E.J. (2010) Clinical Trial of Lutein in Patients with Retinitis Pigmentosa Receiving Vitamin A. Archives of Ophthalmology, 128, 403-411.

[8]   Usui, S., Komeima, K., Lee, S.Y., Jo, Y.J., Ueno, S., Rogers, B.S., Wu, Z., Shen, J., Lu, L., Oveson, B.C., Rabinovitch, P.S. and Campochiaro, P.A. (2009) Increased Expression of Catalase and Superoxide Dismutase 2 Reduces Cone Cell Death in Retinitis Pigmentosa. Molecular Therapy, 17, 778-786.

[9]   Komeima, K., Rogers, B.S., Lu, L. and Campochiaro P.A. (2006) Antioxidants Reduce Cone Cell Death in a Model of Retinitis Pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 103, 11300-11305.

[10]   Lee, S.Y., Usui, S., Zafar, A.B., Oveson, B.C., Jo, Y.J., Lu, L., Masoudi, S. and Campochiaro, P.A. (2011) N-Acetylcysteine Promotes Long-Term Survival of Cones in a Model of Retinitis Pigmentosa. Journal of Cellular Physiology, 226, 1843-1849.

[11]   Leonard, K.C., Petrin, D., Coupland, S.G., Baker, A.N., Leonard, B.C., LaCasse, E.C., Hauswirth, W.W., Korneluk, R.G. and Tsilfidis C. (2007) XIAP Protection of Photoreceptors in Animal Models of Retinitis Pigmentosa. PLoS ONE, 2, e314.

[12]   Gryglewski, R.J., Korbut, R., Robak, J. and Swies, J. (1987) On the Mechanism of Antithrombotic Action of Flavonoids. Biochemical Pharmacology, 36, 317-322.

[13]   Middleton Jr., E. and Kandaswami, C. (1992) Effects of Flavonoids on Immune and Inflammatory Cell Functions. Biochemical Pharmacolology, 43, 1167-1179.

[14]   Havsteen, B.H. (2002) The Biochemistry and Medical Significance of the Flavonoids. Pharmacology and Therapeutics, 96, 67-202.

[15]   Ueda, H., Yamazaki, C. and Yamazaki, M. (2004) A Hydroxyl Group of Flavonoids Affects Oral Anti-Inflammatory Activity and Inhibition of Systemic Tumor Necrosis Factor-Alpha Production. Bioscience, Biotechnology, and Biochemistry, 68, 119-125.

[16]   Soobrattee, M.A., Bahorun, T. and Aruoma, O.I. (2006) Chemopreventive Actions of Polyphenolic Compounds in Cancer. BioFactors, 27, 19-35.

[17]   Bagchi, D., Garg, A., Krohn, R.L., Bagchi, M., Bagchi, D.J., Balmoori, J. and Stohs, S.J. (1998) Protective Effects of Grape Seed Proanthocyanidins and Selected Antioxidants against TPA-Induced Hepatic and Brain Lipid Peroxidation and DNA Fragmentation, and Peritoneal Macrophage Activation in Mice. General Pharmacology: The Vascular System, 30, 771-776.

[18]   Santos-Buelga, C. and Scalbert, A. (2000) Proanthocyanidins and Tannin-Like Compounds-Nature, Occurrence, Dietary Intake and Effects on Nutrition and Health. Journal of the Science of Food and Agriculture, 80, 1094-1117.<1094::AID-JSFA569>3.0.CO;2-1

[19]   Fujii, H., Nishioka, H., Wakame, K., Magnuson, B.A. and Roberts, A. (2008) Acute, Subchronic and Genotoxicity Studies Conducted with Oligonol, an Oligomerized Polyphenol Formulated from Lychee and Green Tea Extracts. Food and Chemical Toxicology, 46, 3553-3562.

[20]   Tanaka, T., Yoshitake, N., Zhao, P., Matsuo, Y., Kouno, I.L. and Nonaka, G.I. (2007) Production of Oligometric Pro-antocyanidins by Fragmentation of Polymers. Japanese Journal of Food Chemistry, 14, 134-139.

[21]   Nishioka, H., Fujii, H., Sun, B. and Aruoma, O.I. (2006) Comparative Efficacy of Oligonol, Catechin and (-)-Epigallocatechin 3-O-Gallate in Modulating the Potassium Bromate-Induced Renal Toxicity in Rats. Toxicology, 226, 181-187.

[22]   Fujii, H., Sun, B., Nishioka, H., Hirose, A. and Aruoma, O.I. (2007) Evaluation of the Safety and Toxicity of the Oligomerized Polyphenol Oligonol. Food and Chemical Toxicology, 45, 378-387.

[23]   Sakurai, T., Nishioka, H., Fujii, H., Nakano, N., Kizaki, T., Radak, Z., Izawa, T., Haga, S. and Ohno, H. (2008) Antioxidative Effects of a New Lychee Fruit-Derived Polyphenol Mixture, Oligonol, Converted into a Low-Molecular Form in Adipocytes. Bioscience, Biotechnology, and Biochemistry, 72, 463-476.

[24]   Noh, J.S., Park, C.H. and Yokozawa, T. (2011) Treatment with Oligonol, a Low-Molecular Polyphenol Derived from Lychee Fruit, Attenuates Diabetes-Induced Hepatic Damage through Regulation of Oxidative Stress and Lipid Metabolism. British Journal of Nutrition, 106, 1013-1022.

[25]   Yum, H.W., Zhong, X., Park, J., Na, H.K., Kim, N., Lee, H.S. and Surh, Y.J. (2013) Oligonol Inhibits Dextran Sulfate Sodium-Induced Colitis and Colonic Adenoma Formation in Mice. Antioxidants and Redox Signaling, 19, 102-114.

[26]   Gangehei, L., Ali, M., Zhang, W., Chen, Z., Wakame, K. and Haidari, M. (2010) Oligonol a Low Molecular Weight Polyphenol of Lychee Fruit Extract Inhibits Proliferation of Influenza Virus by Blocking Reactive Oxygen Species-Dependent ERK Phosphorylation. Phytomedicine, 17, 1047-1056.

[27]   Ohno, H., Sakurai, T., Hisajama, T., Abe, S., Kizaki, T., Ogasawara, J.E., Ishibashi, Y., Imaizumi, K., Takemasa, T., Haga, S., Kitadate, K., Nishioka, H. and Fujii, H. (2008) The Supplementation of Oligonol, the New Lychee Fruit-Derived Polyphenol Converting into a Low-Molecular Form, Has a Positive Effect on Fatigue during Regular Track-and-Field Training in Young Athletes. Advances in Exercise and Sports Physiology, 13, 93-99.

[28]   Lee, J.B., Shin, Y.O., Min, Y.K. and Yang, H.M. (2010) The Effect of Oligonol Intake on Cortisol and Related Cytokines in Healthy Young Men. Nutrition Research and Practice, 4, 203-207.

[29]   Nishihira, J., Sato-Ueshima, M., Kitadate, K., Wakame, K. and Fujii, H. (2009) Amelioration of Abdominal Obesity by Low-Molecular-Weight Polyphenol (Oligonol) from Lychee. Journal of Functional Foods, 1, 341-348.

[30]   Tsubura, A., Lai, Y.C., Miki, H., Sasaki, T., Uehara, N., Yuri, T. and Yoshizawa, K. (2011) Animal Models of N-Methyl-N-Nitrosourea-Induced Mammary Cancer and Retinal Degeneration with Special Emphasis on Therapeutic Trials. In Vivo, 25, 11-22.

[31]   Miki, K., Uehara, N., Shikata, N., Matsumura, M. and Tsubura, A. (2007) Poly (ADP-Ribose) Polymerase Inhibitor 3-Aminobenzamide Rescues N-Methyl-N-Nitrosourea-Induced Photoreceptor Cell Apoptosis in Sprague-Dawley Rats through Preservation of Nuclear Factor-kB Activity. Experimental Eye Research, 84, 285-292.

[32]   Miura, T., Kitadate, K. and Fujii, H. (2010) The Function of the Next Generation Polyphenol, “Oligonol”. In: Bagchi, D., Lau, F.C. and Ghosh, D.K., Eds., Biotechnology in Functional Foods and Nutraceuticals, CRC Press, Boca Raton, 91-102.

[33]   Gavrieli, Y., Sherman, Y. and Ben-Sasson, S.A. (1992) Identification of Programmed Cell Death in Situ via Specific Labeling of Nuclear DNA Fragmentation. Journal of Cell Biology, 119, 493-501.

[34]   Krishnamoorthy, V., Jain, V., Cherukuri, P., Baloni, S. and Dhingra, N.K. (2008) Intravitreal Injection of Fluorochrome-Conjugated Peanut Agglutinin Results in Specific and Reversible Labeling of Mammalian Cones in Vivo. Investative Ophthalmology and Visual Science, 49, 2643-2650.

[35]   Tsuruma, K., Yamauchi, M., Inokuchi, Y., Sugitani, S., Shimazawa, M. and Hara, H. (2012) Role of Oxidative Stress in Retinal Photoreceptor Cell Death in N-Methyl-N-Nitrosourea-Treated Mice. Journal of Pharmacological Sciences, 118, 351-362.

[36]   Wang, D., Li, Y., Wang, Z., Sun, G.Y. and Zhang, Q.H. (2013) Nimodipine Rescues N-Methyl-N-Nitrosourea-Induced Retinal Degeneration in Rats. Pharmacognosy Magazine, 9, 149-154.

[37]   Moriguchi, K., Yuri, T., Yoshizawa, K., Kiuchi, K., Takada, H., Inoue, Y., Hada, T., Matsumura, M. and Tsubura, A. (2003) Dietary Docosahexaenoic Acid Protects against N-Methyl-N-Nitrosourea-Induced Retinal Degeneration in Rats. Experimental Eye Research, 77, 167-173.

[38]   Paik, S.S., Jeong, E., Jung, S.W., Ha, T.J., Kang, S., Sim, S., Jeon, J.H., Chun, M.H. and Kim, I.B. (2012) Anthocya- nins from the Seed Coat of Black Soybean Reduce Retinal Degeneration Induced by N-Methyl-N-Nitrosourea. Experimental Eye Research, 97, 55-62.

[39]   Kiuchi, K., Yoshizawa, K., Shikata, N., Matsumura, M. and Tsubura, A. (2002) Nicotinamide Prevents N-Methyl-N-Nitrosourea-Induced Photoreceptor Cell Apoptosis in Sprague-Dawley Rats and C57BL Mice. Experimental Eye Research, 74, 383-392.

[40]   Emoto, Y., Yoshizawa, K., Uehara, N., Kinoshita, Y., Yuri, T., Shikata, N. and Tsubura, A. (2013) Curcumin Suppresses N-Methyl-N-Nitrosourea-Induced Photoreceptor Apoptosis in Sprague-Dawley Rats. In Vivo, 27, 583-590.