JBNB  Vol.5 No.2 , April 2014
A Biomimetic Gellan-Based Hydrogel as a Physicochemical Biofilm Model

Biofilm-forming microorganisms are ubiquitous, but continuous cultivation of these microorganisms with predictable biofilm growth and structural properties remains challenging. The development of a reliable simulated biofilm has been limited by a lack of information about the microorganism subpopulations and fluid-structure interactions involved in biofilm formation and detachment due to mechanical stress. This paper presents a gellan-based hydrogel as an alternative material for a simulated physicochemical biofilm. The mechanical properties of the hydrogel in terms of the storage (G') and loss (G'') moduli can be tuned and adapted to imitate biofilms of different strengths by changing the concentration of gellan and mono(Na+) or divalent (Mg2+) ions. The storage modulus of the hydrogel ranges from 2 to 20 kPa, and the loss modulus ranges from 0.1 to 2.0 kPa. The material constants of the hydrogels and biofilms of Pseudomonas putida KT2440 were experimentally determined by rheometric analysis. A simplified biofilm imitate based on highly hydrolyzed gellan hydrogels was established by using experimental design techniques that permitted independent analyses regardless of growth. This model system design was compared to real biofilms and was adapted to mimic the mechanical properties of biofilms by changing the hydrogel composition, resulting in biofilm-like viscoelastic behavior. The use of a gellan-based hydrogel enables the imitation of biofilm behavior in the absence of growth effects, thus simplifying the system. Biofilm characterization tools can be tested and verified before their application to the measurement of slow-growing, highly variable biofilms to estimate system errors, which are often smaller than the biological variations. In general, this method permits faster and more reliable testing of biofilm mechanical properties.

Cite this paper: Hellriegel, J. , Günther, S. , Kampen, I. , Bolea Albero, A. , Kwade, A. , Böl, M. and Krull, R. (2014) A Biomimetic Gellan-Based Hydrogel as a Physicochemical Biofilm Model. Journal of Biomaterials and Nanobiotechnology, 5, 83-97. doi: 10.4236/jbnb.2014.52011.

[1]   Lembre, P., Lorentz, C. and Di Martino, P. (2012) Exopolysaccharides of the Biofilm Matrix: A Complex Biophysical World. In: Karunaratne, D.N., Ed., The Complex World of Polysaccharides, InTech, 371-392.

[2]   Characklis, W.G. (1973) Attached Microbial Growths—II. Frictional Resistance Due to Microbial Slimes. Water Research, 7, 1249-1258.

[3]   Flemming, H.-C. and Schaule, G. (1994) Mikrobielle Werkstoffzerstörung-Biofilm und Biofouling: Bekämpfung von Biofouling in wä&betarigen Systemen. Materials and Corrosion/Werkstoffe Und Korrosion, 45, 40-53.

[4]   Gross, R., Lang, K., Bühler, K. and Schmid, A. (2010) Characterization of a Biofilm Membrane Reactor and Its Prospects for Fine Chemical Synthesis. Biotechnology and Bioengineering, 105, 705-717.

[5]   Gross, R., Buehler, K. and Schmid, A. (2013) Engineered Catalytic Biofilms for Continuous Large Scale Production of n-Octanol and (S)-Styrene Oxide. Biotechnology and Bioengineering, 110, 424-436.

[6]   Nikolaev, Y.A. and Plakunov, V.K. (2007) Biofilm—“City of Microbes” or an Analogue of Multicellular Organisms? Microbiology, 76, 125-138.

[7]   Böl, M., Möhle, R.B., Haesner, M., Neu, T.R., Horn, H. and Krull, R. (2009) 3D Finite Element Model of Biofilm Detachment Using Real Biofilm Structures from CLSM Data. Biotechnology and Bioengineering, 103, 177-186.

[8]   Ehret, A.E. and Böl, M. (2012) Modelling Mechanical Characteristics of Microbial Biofilms by Network Theory. Journal of the Royal Society, Interface/the Royal Society, 2012, 1-27.

[9]   Böl, M., Ehret, A.E., Bolea Albero, A., Hellriegel, J. and Krull, R. (2013) Recent Advances in Mechanical Characterisation of Biofilm and Their Significance for Material Modelling. Critical Reviews in Biotechnology, 33, 145-171.

[10]   Rowley, J.A., Madlambayan, G. and Mooney, D.J. (1999) Alginate Hydrogels as Synthetic Extracellular Matrix Materials. Biomaterials, 20, 45-53.

[11]   Shoichet, M.S., Li, R.H., White, M.L. and Winn, S.R. (1996) Stability of Hydrogels Used in Cell Encapsulation: An in Vitro Comparison of Alginate and Agarose. Biotechnology and Bioengineering, 50, 374-381.<374::AID-BIT4>3.0.CO;2-I

[12]   Nishinari, K. (1999) Physical Chemistry and Industrial Application of Gellan Gum. Springer Verlag, Berlin, Heidelberg, New York.

[13]   Weller, D.M. (1988) Biological Control of Soilborne Plant Pathogens in the Rhizosphere with Bacteria. Annual Review of Phytopathology, 26, 379-407.

[14]   Liu, L. (1995) Induction of Systemic Resistance in Cucumber Against Fusarium Wilt by Plant Growth-Promoting Rhizobacteria,” Phytopathology, 85, 695.

[15]   Tolker-Nielsen, T., Brinch, U.C., Ragas, P.C., Andersen, J.B., Jacobsen, C.S. and Molin, S. (2000) Development and Dynamics of Pseudomonas sp. Biofilms. Journal of Bacteriology, 182, 6482-6489.

[16]   Nancharaiah, Y.V., Venugopalan, V.P., Wuertz, S., Wilderer, P.A. and Hausner, M. (2005) Compatibility of the Green Fluorescent Protein and a General Nucleic Acid Stain for Quantitative Description of a Pseudomonas putida Biofilm. Journal of Microbiological Methods, 60, 179-187.

[17]   Nilsson, M., Chiang, W.-C., Fazli, M., Gjermansen, M., Givskov, M. and Tolker-Nielsen, T. (2011) Influence of Putative Exopolysaccharide Genes on Pseudomonas putida KT2440 Biofilm Stability. Environmental Microbiology, 13, 1357-1369.

[18]   Chung, T.-P., Tseng, H.-Y. and Juang, R.-S. (2003) Mass Transfer Effect and Intermediate Detection for Phenol Degradation in Immobilized Pseudomonas putida Systems. Process Biochemistry, 38, 1497-1507.

[19]   Ward, P.G., Goff, M., Donner, M., Kaminsky, W. and O’Connor, K.E. (2006) A Two Step Chemo-Biotechnological Conversion of Polystyrene to a Biodegradable Thermoplastic. Environmental Science and Technology, 40, 2433-2437.

[20]   El-Bassi, L., Iwasaki, H., Oku, H., Shinzato, N. and Matsui, T. (2010) Biotransformation of Benzothiazole Derivatives by the Pseudomonas putida Strain HKT554. Chemosphere, 81, 109-113.

[21]   Körstgens, V., Flemming, H.C., Wingender, J. and Borchard, W. (2001) Influence of Calcium Ions on the Mechanical Properties of a Model Biofilm of Mucoid Pseudomonas aeruginosa. Water Science and Technology, 43, 49-57.

[22]   Tropea, C., Yarin, A.L. and Foss, J.F. (2007) Springer Handbook of Experimental Fluid Mechanics. Springer-Verlag, Berlin Heidelberg.

[23]   Takahashi, R., Akutu, M., Kubota, K. and Nakamura, K. (1999) Characterization of Gellan Gum in Aqueous NaCl Solution. In: Nishinari, K., Ed., Physical Chemistry and Industrial Application of Gellan Gum, Springer-Verlag, Berlin Heidelberg, 1-7.

[24]   Sworn, G., Sanderson, G.R. and Gibson, W. (1995) Gellan Gum Fluid Gels. Food Hydrocolloids, 9, 265-271.

[25]   Laaman, T.R. (2011) Hydrocolloids in Food Processing Hydrocolloids. John Wiley & Sons, Hoboken.

[26]   Crescenzi, V. and Dentini, M. (1987) The Influence of Side-Chains on the Dilute-Solution Properties of Three Structurally Related, Bacterial Anionic Polysaccharides. Carbohydrate Research, 160, 283-302.

[27]   Miyoshi, E. and Nishinari, K. (1999) Rheological and Thermal Properties near the Sol-Gel Transition of Gellan Gum Aqueous Solutions. Progress in Colloid and Polymer Science, 114, 68-82.

[28]   Noda, S., Funami, T., Nakauma, M., Asai, I., Takahashi, R., Al-Assaf, S., et al. (2008) Molecular Structures of Gellan Gum Imaged with Atomic Force Microscopy in Relation to the Rheological Behavior in Aqueous Systems. 1. Gellan Gum with Various Acyl Contents in the Presence and Absence of Potassium. Food Hydrocolloids, 22, 1148-1159.

[29]   Nitta, Y., Takahashi, R. and Nishinari, K. (2010) Viscoelasticity and Phase Separation of Aqueous Na-Type Gellan Solution. Biomacromolecules, 11, 187-191.

[30]   Miyoshi, E. (1996) Rheological and Thermal Studies of Gel-Sol Transition in Gellan Gum Aqueous Solutions. Carbohydrate Polymers, 30, 109-119.

[31]   Oliveira, J.T., Martins, L., Picciochi, R., Malafaya, P.B., Sousa, R.A., Neves, N.M., et al. (2010) Gellan Gum: A New Biomaterial for Cartilage Tissue Engineering Applications. Journal of Biomedical Materials Research Part A, 93, 852-863.

[32]   Sutherland, I. (2001) Biofilm Exopolysaccharides: A Strong and Sticky Framework. Microbiology, 147, 3-9.

[33]   Wloka, M., Rehage, H., Flemming, H.-C. and Wingender, J. (2004) Rheological Properties of Viscoelastic Biofilm Extracellular Polymeric Substances and Comparison to the Behavior of Calcium Alginate Gels. Colloid and Polymer Science, 282, 1067-1076.

[34]   Flemming, H.-C. and Wingender, J. (2010) The Biofilm Matrix. Nature Reviews. Microbiology, 8, 623-633.

[35]   Di Stefano, A., D’Aurizio, E., Trubiani, O., Grande, R., Di Campli, E., Di Giulio, M., et al. (2009) Viscoelastic Properties of Staphylococcus aureus and Staphylococcus epidermidis Mono-Microbial Biofilms. Microbial Biotechnology, 2, 634-641.

[36]   Czaczyk, K. and Myszka, K. (2007) Biosynthesis of Extracellular Polymeric Substances (EPS) and Its Role in Microbial Biofilm Formation. Polish Journal of Environmental Studies, 16, 799-806.

[37]   Stoodley, P., Lewandowski, Z., Boyle, J.D. and Lappin-Scott, H.M. (1999) Structural Deformation of Bacterial Biofilms Caused by Short-Term Fluctuations in Fluid Shear: An in Situ Investigation of Biofilm Rheology. Biotechnology and Bioengineering, 65, 83-92.<83::AID-BIT10>3.0.CO;2-B

[38]   Flemming, H.C. and Wingender, J. (2001) Relevance of Microbial Extracellular Polymeric Substances (EPSs)—Part I: Structural and Ecological Aspects. Water Science and Technology, 43, 1-8.

[39]   Pérez-Campos, S.J., Chavarría-Hernández, N., Tecante, A., Ramírez-Gilly, M. and Rodríguez-Hernández, A.I. (2012) Gelation and Microstructure of Dilute Gellan Solutions with Calcium Ions. Food Hydrocolloids, 28, 291-300.

[40]   García, M.C., Alfaro, M.C., Calero, N. and Muñoz, J. (2011) Influence of Gellan Gum Concentration on the Dynamic Viscoelasticity and Transient Flow of Fluid Gels. Biochemical Engineering Journal, 55, 73-81.

[41]   Nijenhuis, K. (1997) Thermoreversible Networks Viscoelastic Properties and Structure of Gels. Springer-Verlag, Berlin Heidelberg.

[42]   Nishinari, K. (1996) Rheological and DSC Studies on the Interaction between Gellan Gum and Konjac Glucomannan. Carbohydrate Polymers, 30, 193-207.

[43]   Liu, L., Wang, B., Gao, Y. and Bai, T.-C. (2013) Chitosan Fibers Enhanced Gellan Gum Hydrogels with Superior Mechanical Properties and Water-Holding Capacity. Carbohydrate Polymers, 97, 152-158.

[44]   Khuri, A. (2006) Response Surface Methodology and Related Topics. World Scientific Publishing Co. Pte. Ltd., Singapore.

[45]   Siebertz, K., van Bebber, D. and Hochkirchen, T. (2010) Statistische Versuchsplanung. Springer-Verlag, Berlin Heidelberg.

[46]   Box, G. and Wilson, K. (1951) On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society. Series B (Methodological), 13, 1-45.

[47]   Montgomery, D. (1997) Design and Analysis of Experiments. 5th Edition, John Wiley & Sons, Inc., New York.

[48]   Carl Roth (2006) GELRITE—Gellan Gum for Microbiological Applications. Carl Roth, Karlsruhe.

[49]   Beucher, O. (2005) Wahrscheinlichkeitsrechnung und Statistik mit MATLAB. 2nd Edition., Springer-Verlag, Berlin Heidelberg.

[50]   Cesàro, A., Gamini, A. and Navarini, L. (1992) Supramolecular Structure of Microbial Polysaccharides in Solution: From Chain Conformation to Rheological Properties. Polymer, 33, 4001-4008.

[51]   Malvern Service (2013) Malvern, Personal Notification.