MNSMS  Vol.4 No.2 , April 2014
Comparison of Functionals for Metal Hexaboride Band Structure Calculations
ABSTRACT
Density functional calculations of the electronic band structure for superconducting and semiconducting metal hexaborides are compared using a consistent suite of assumptions and with emphasis on the physical implications of computed models. Spin polarization enhances mathematical accuracy of the functional approximations and adds significant physical meaning to model interpretation. For YB6 and LaB6, differences in alpha and beta projections occur near the Fermi energy. These differences are pronounced for superconducting hexaborides but do not occur for other metal hexaborides.

Cite this paper
Alarco, J. , Talbot, P. and Mackinnon, I. (2014) Comparison of Functionals for Metal Hexaboride Band Structure Calculations. Modeling and Numerical Simulation of Material Science, 4, 53-69. doi: 10.4236/mnsms.2014.42008.
References
[1]   Samuely, P., Reiffers, M., Flachbart, K., Akimenko, A.I., Yanson, I.K., Ponomarenko, N.M. and Paderno, Y.B. (1988) Point-Contact Spectroscopy of the Electron-Phonon Interaction in Single-Crystal LaB6. Journal of Low Temperature Physics, 71, 49-61.

[2]   Werheit, H., Filipov, V., Shitsevalova, N., Armbrüster, M. and Schwarz, U. (2012) Isotopic Phonon Effects in LaB6- LaB6 Do Not Possess Cubic Symmetry and Show a Non-Random Isotope Distribution. Journal of Physics: Condensed Matter, 24, 385405-1-14.
http://dx.doi.org/10.1007/BF00115040

[3]   Mackinnon, I.D.R., Alarco, J.A. and Talbot, P.C. (2013) Metal Hexaborides with Sc, Ti or Mn. MNSMS, 3, 158-169.
http://dx.doi.org/10.4236/mnsms.2013.34023

[4]   Ziman, J.M. (1972) Principles of the Theory of Solids. 2nd Edition, Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9781139644075

[5]   Myers, H.P. (2002) Introductory Solid State Physics. 2nd Edition, CRC Press, Boca Raton.

[6]   Springford, M., Ed. (1980) Electrons at the Fermi Surface. Cambridge University Press, Cambridge.

[7]   Grechnev, G.E., Baranovskiy, A.E., Fil, V.D., Ignatova, T.V., Shitsevalova, N.Yu., Filippov, V.B. and Eriksson, O. (2008) Electronic Structure and Bulk Properties of MB6 and MB12 Borides. Low Temperature Physics, 34, 921-929.
http://dx.doi.org/10.1063/1.3009588

[8]   Schell, G., Winter, H., Rietschel, H. and Gompf, F. (1982) Electronic Structure and Superconductivity in Metal Hexaborides. Physical Review B, 25, 1589-1599.
http://dx.doi.org/10.1103/PhysRevB.25.1589

[9]   Hossain, F.M., Riley, D.P. and Murch, G.E. (2005) Ab initio Calculations of the Electronic Structure and Bonding Characteristics of LaB6. Physical Review B, 72, 235101-1-235101-5. http://dx.doi.org/10.1103/PhysRevB.72.235101

[10]   Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K. and Payne, M.C. (2005) First Principles Methods Using CASTEP. Zeitschrift fur Kristall, 220, 567-570.
http://dx.doi.org/10.1524/zkri.220.5.567.65075

[11]   Ceperley, D.M. and Alder, B.J. (1980) Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters, 45, 566-569.
http://dx.doi.org/10.1103/PhysRevLett.45.566

[12]   Perdew, J.P. and Zunger, A. (1981) Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Physical Review B, 23, 5048-5079. http://dx.doi.org/10.1103/PhysRevB.23.5048

[13]   Materials Studio CASTEP Online Help, CASTEP Occupancy Option Dialog.
http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.htm

[14]   Grimme, S. (2006) Semiempirical Hybrid Density Functional with Perturbative Second-Order Correlation. The Journal of Chemical Physics, 124, 034108.
http://dx.doi.org/10.1063/1.2148954

[15]   Liang, J.-J. (2012) Accelrys, CASTEP Customer Support, Personal Communication.

[16]   Longuet-Higgins, H.C. and Roberts, M.D.V. (1954) The Electronic Structure of the Borides MB6. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 224, 336-347.
http://dx.doi.org/10.1098/rspa.1954.0162

[17]   Yamazaki, M. (1957) Group Theoretical Treatment of the Energy Bands in Metal Borides MeB6. Journal of the Physical Society of Japan, 12, 1-6.
http://dx.doi.org/10.1143/JPSJ.12.1

[18]   Urch, D.S. (1970) Orbitals and Symmetry. Penguin Books Ltd., Harmondsworth, Middlesex

[19]   Johnston, R.L. (2002) Atomic and Molecular Clusters. In: Betts, D.S., Ed., Masters Series in Physics and Astronomy, Taylor & Francis, London.

[20]   Fox, M.A. and Wade, K. (2003) Evolving Patterns in Boron Cluster Chemistry. Pure and Applied Chemistry, 75, 1315-1323.
http://dx.doi.org/10.1351/pac200375091315

[21]   Zubarev, D.Y. and Boldyrev, A.I. (2007) Comprehensive Analysis of Chemical Bonding in Boron Clusters. Journal of Computational Chemistry, 28, 251-268.
http://dx.doi.org/10.1002/jcc.20518

[22]   Hauser, A.W., Callegari, C. and Ernst, W.E. (2009) Level-Structure and Magnetic Properties from One-Electron Atoms to Clusters with Delocalized Electronic Orbitals: Shell Models for Alkali Trimers. In: Piecuch, P., et al., Eds., Advances in the Theory of Atomic and Molecular Systems—Dynamics, Spectroscopy, Clusters and Nanostructures, Springer, Berlin. http://dx.doi.org/10.1007/978-90-481-2985-0_10

[23]   Khanna, S.N. and Jena, P. (1992) Assembling Crystals from Clusters. Physical Review Letters, 69, 1664-1667. http://dx.doi.org/10.1103/PhysRevLett.69.1664

[24]   Medel, V.M., Reveles, J.U., Khanna, S.N., Chauhan, V., Sen, P. and Castleman, A.W. (2011) Hund’s Rule in Superatoms with Transition Metal Impurities. Proceedings of the National Academy of Sciences of the United States of America, 108, 10062-10066. http://dx.doi.org/10.1073/pnas.1100129108

[25]   Castleman, A.W. and Khanna, S.N. (2009) Centennial Feature Article: Clusters, Superatoms, and Building Blocks of New Materials. The Journal of Physical Chemistry C, 113, 2664-2675. http://dx.doi.org/10.1021/jp806850h

[26]   Ashman, C., Khanna, S.N. and Pederson, M.R. (2002) Electron Attachment and Dynamics of Alkali Atoms in Al13X (X = Li–Cs) Clusters. Physical Review B, 66, 193408.
http://dx.doi.org/10.1103/PhysRevB.66.193408

[27]   Weigend, F. and Ahlrichs, R. (2010) Quantum Chemical Treatments of Metal Clusters. Philosophical Transactions of the Royal Society A, 368, 1245-1263.
http://dx.doi.org/10.1098/rsta.2009.0268

[28]   Coulson, C.A. (1963) Valence. 2nd Edition, Oxford University Press, London.

[29]   Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory. 2nd Edition, Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511524899

[30]   Perkins, P.G., Armstrong, D.R. and Breeze, A. (1975) On the Electronic Structure of Some Metal Hexaborides. Journal of Physics C: Solid State Physics, 8, 3558-3570. http://dx.doi.org/10.1088/0022-3719/8/21/026

[31]   Hasegawa, A. and Yanase, A. (1977) Energy Band Structure and Fermi Surface of LaB6 by a Self-Consistent APW Method. Journal of Physics F: Metal Physics, 7, 1245-1260. http://dx.doi.org/10.1088/0305-4608/7/7/023

[32]   Walch, P.F., Ellis, D.E. and Mueller, F.M. (1977) Energy Bands and Bonding in LaB6 and YB6. Physical Review B, 15, 1859-1866.
http://dx.doi.org/10.1103/PhysRevB.15.1859

[33]   Johnson, R.W. and Daane, A.H. (1963) Electron Requirements of Bonds in Metal Borides. The Journal of Chemical Physics, 38, 425-432.
http://dx.doi.org/10.1063/1.1733675

[34]   Ott, H.R., Gavilano, J.L., Ambrosini, B., Vonlanthen, P., Felder, E., Degiorgi, L., Young, D.P., Fisk, Z. and Zysler, R. (2000) Unusual Magnetism of Hexaborides. Physical B: Condensed Matter, 281, 423-427.

[35]   Denlinger, J.D., Clack, J.A., Allen, J.W., Gweon, G.-H., Poirier, D.M., Olson, C.G., Sarrao, J.L., Bianchi, A.D. and Fisk, Z. (2002) Bulk Band Gaps in Divalent Hexaborides. Physical Review Letters, 89, 157601.
http://dx.doi.org/10.1103/PhysRevLett.89.157601

[36]   Souma, S., Komatsu, H., Takahashi, T., Kaji, R., Sasaki, T., Yokoo, Y. and Akimitsu, J. (2003) Electronic Band Structure and Fermi Surface of CaB6 Studied by Angle-Resolved Photoemission Spectroscopy. Physical Review Letters, 90, 027202.
http://dx.doi.org/10.1103/PhysRevLett.90.027202

[37]   Kino, H., Aryasetiawan, F., van Schilfgaarde, M., Kotani, T., Miyake, T. and Terakura, K. (2002) GW Quasiparticle Band Structure of CaB6. Journal of Physics and Chemistry of Solids, 63, 1595-1597.
http://dx.doi.org/10.1016/S0022-3697(02)00118-X

[38]   Gao, S.-P., Jiang, J., Cao, M., Zhu, J. and Yuan, J. (2004) Unoccupied Electronic States in CaB6 Studied by Density Functional Theory and EELS Measurements. Physical Review B, 69, 214419.
http://dx.doi.org/10.1103/PhysRevB.69.214419

[39]   Helms, Z.M., Sen, P. and Mitas, L. (2005) Electronic Structure and Origin of Ferromagnetism in CaB6.
http://arxiv.org/pdf/cond-mat/0509363.pdf

[40]   Maiti, K. (2008) Role of Vacancies and Impurities in the Ferromagnetism of Semiconducting CaB6. Europhysics Letters, 82, 67006.

[41]   Young, D.P., Hall, D., Torelli, M.E., Fisk, Z., Sarrao, J.L., Thompson, J.D., Ott, H.-R., Oseroff, S.B., Goodrich, R.G. and Zysler, R. (1999) High-Temperature Weak Ferromagnetism in a Low-Density Free-Electron Gas. Nature, 397, 412-414.
http://dx.doi.org/10.1038/17081

[42]   Fisk, Z., Ott, H.R., Barzykin, V. and Gor’kov, L.P. (2002) The Emerging Picture of Ferromagnetism in the Divalent Hexaborides. Physica B: Condensed Matter, 312, 808-810.

[43]   Cho, B.K., Rhyee, J.-S., Oh, B.H., Jung, M.H., Kim, H.C., Yoon, Y.K., Kim, J.H. and Ekino, T. (2004) Formation of Midgap States and Ferromagnetism in Semiconducting CaB6. Physical Review B, 69, 113202.
http://dx.doi.org/10.1103/PhysRevB.69.113202

[44]   Hasegawa, A. and Yanase, A. (1979) Electronic Structure of CaB6. Journal of Physics C: Solid State Physics, 12, 5431-5440. http://dx.doi.org/10.1088/0022-3719/12/24/014

[45]   Tromp, H.J., van Gelderen, P., Kelly, P.J., Brocks, G. and Bobbert, P.A. (2001) CaB6: A New Semiconducting Material for Spin Electronics. Physical Review Letters, 87, 016401. http://dx.doi.org/10.1103/PhysRevLett.87.016401

[46]   Lee, B. and Wang, L.-W. (2005) Electronic Structure of Calcium Hexaborides. Applied Physics Letters, 87, 262509. http://dx.doi.org/10.1063/1.2150578

[47]   Li, L.-H., Chen, L., Li, J.-Q. and Wu, L.-M. (2009) The First-Principles Study of Bulk CaB6 and the Field Emission of CaB6 Nanowires Using the HCTH Functional. The Journal of Physical Chemistry C, 113, 15384-15389. http://dx.doi.org/10.1021/jp901965y

[48]   Xu, Y., Zhang, L., Cui, T., Li, Y., Xie, Y., Yu, W., Ma, Y. and Zou, G. (2007) First-Principles Study of the Lattice Dynamics, Thermodynamic Properties and Electron-Phonon Coupling of YB6. Physical Review B, 76, 214103. http://dx.doi.org/10.1103/PhysRevB.76.214103

[49]   Xiao, L., Su, Y., Chen, H., Jiang, M., Liu, S., Hu, Z., Liu, R., Peng, P., Mu, Y. and Zhu, D. (2011) Study on the Electronic Structure and the Optical Performance of YB6 by the First-Principles Calculations. AIP Advances, 1, 022140.

[50]   Sholl, D.S. and Steckel, J.A. (2009) Density Functional Theory—A Practical Introduction. Wiley, Hoboken. http://dx.doi.org/10.1002/9780470447710

[51]   Martin, R.M. (2005) Electronic Structure—Basic Theory and Practical Methods. Cambridge University Press, Cambridge.

[52]   Milman, V., Winkler, B., White, J.A., Pickard, C.J., Payne, M.C., Akhmatskaya, E.V. and Nobes, R.H. (2000) Electronic Structure, Properties, and Phase Stability of Inorganic Crystals: A Pseudopotential Plane-Wave Study. International Journal of Quantum Chemistry, 77, 895-910.
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C

[53]   Kurth, S., Perdew, J.P. and Blaha, P. (1999) Molecular and Solid-State Tests of Density Functional Approximations: LSD, GGAs, and Meta-GGAs. International Journal of Quantum Chemistry, 75, 889-909.
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<889::AID-QUA54>3.0.CO;2-8

[54]   Rydberg, H. (2001) Nonlocal Correlations in Density Functional Theory. Department of Applied Physics, Chalmers University of Technology and Goteborg University, Gothenburg.

[55]   Mattsson, A.E., Schultz, P.A., Desjarlais, M.P., Mattsson, T.R. and Leung, K. (2005) Designing Meaningful Density Functional Theory Calculations in Materials Science—A Primer. Modelling and Simulation in Materials Science and Engineering, 13, R1-R31. http://dx.doi.org/10.1088/0965-0393/13/1/R01

[56]   Perdew, J.P., Ruzsinszky, A., Tao, J., Staroverov, V.N., Scuseria, G.E. and Csonka, G.I. (2005) Prescription for the Design and Selection of Density Functional Approximations: More Constraint Satisfaction with Fewer Fits. The Journal of Chemical Physics, 123, 062201.
http://dx.doi.org/10.1063/1.1904565

[57]   Hafner, J.R., Wolverton, C. and Ceder, G. (2006) Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research. MRS Bulletin, 31, 659-668. http://dx.doi.org/10.1557/mrs2006.174

[58]   Sousa, S.F., Fernandes, P.A. and Ramos, M.J. (2007) General Performance of Density Functionals. The Journal of Chemical Physics A, 111, 10439-10452.
http://dx.doi.org/10.1021/jp0734474

[59]   Janesko, B.G., Henderson, T.M. and Scuseria, G.E. (2009) Screened Hybrid Density Functionals for Solid-State Chemistry and Physics. Physical Chemistry Chemical Physics, 11, 443-454.
http://dx.doi.org/10.1039/b812838c

[60]   Goerigk, L. and Grimme, S. (2001) A Thorough Benchmark of Density Functional Methods for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Physical Chemistry Chemical Physics, 13, 6670-6688.
http://dx.doi.org/10.1039/c0cp02984j

[61]   Cohen, A.J., Mori-Sanchez, P. and Yang, W. (2012) Challenges for Density Functional Theory. Chemical Reviews, 112, 289-320.
http://dx.doi.org/10.1021/cr200107z

[62]   Lejaeghere, K., Speybroeck, V.V., Oost, G.V. and Cottenier, S. (2014) Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals. Critical Reviews in Solid State and Materials Sciences, 39, 1-24.
http://dx.doi.org/10.1080/10408436.2013.772503

[63]   Tanaka, K. and Onuki, Y. (2002) Observation of 4f Electron Transfer from Ce to B6 in the Kondo Crystal CeB6 and Its Mechanism by Multi-Temperature X-Ray Diffraction. Acta Crystallographica Section B, 58, 423-436.
http://dx.doi.org/10.1107/S010876810102167X

[64]   Funahashi, S., Tanaka, K. and Iga, F. (2010) X-Ray Atomic Orbital Analysis of 4f and 5d Electron Configuration of SmB6 at 100, 165, 230 and 298K. Acta Crystallographica Section B, 66, 292-306. http://dx.doi.org/10.1107/S0108768110009250

[65]   Ammar, A., Menetrier, M., Villesuzanne, A., Matar, S., Chevalier, B. and Etourneau, J. (2004) Investigation of the Electronic and Structural Properties of Potassium Hexaboride, KB6, by Transport, Magnetic Susceptibility, EPR and NMR Measurements, Temperature-Dependent Crystal Structure Determination, and Electronic Band Structure Calculations. Inorganic Chemistry, 43, 4974-4987.
http://dx.doi.org/10.1021/ic049444c

[66]   Schmitt, K., Stuckl, C., Ripplinger, H. and Albert, B. (2001) Crystal and Electronic Structure of BaB6 in Comparison with CaB6 and Molecular [B6H6]-2 . Solid State Sciences, 3, 321-327.
http://dx.doi.org/10.1016/S1293-2558(00)01091-8

[67]   Ishii, M., Aono, M., Muranaka, S. and Kawai, S. (1976) Raman Spectra of Metallic and Semiconducting Metal Hexaborides. Solid State Communications, 20, 437-440. http://dx.doi.org/10.1016/0038-1098(76)90544-5

[68]   Yahia, Z., Turrell, S., Turrell, G. and Mercurio, J.P. (1990) Infra-Red and Raman Spectra of Hexaborides: Force-Field Calculations and Isotopic Effects. Journal of Molecular Structure, 224, 303-312.
http://dx.doi.org/10.1016/0022-2860(90)87025-S

[69]   Souma, S., Komoda, H., Iida, Y., Sato, T., Takahashi, T. and Kunii, S. (2005) Direct Observation of Superconducting Gap in YB6 by Ultrahigh-Resolution Photoelectron Spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 144-147, 503-506. http://dx.doi.org/10.1016/j.elspec.2005.01.125

[70]   Kunii, S., Kasuya, T., Kadowaki, K., Date, M. and Woods, S.B. (1984) Electron Tunneling into Superconducting YB6. Solid State Communications, 52, 659-661.
http://dx.doi.org/10.1016/0038-1098(84)90728-2

[71]   Mott, S.N. (1974) Metal-Insulator Transitions. Taylor and Francis Ltd., London.

 
 
Top