Back
 MRC  Vol.3 No.2 , April 2014
Efficiency of Iron Supported on Porous Material (Prepared from Peanut Shell) for Liquid Phase Aerobic Oxidation of Alcohols
Abstract: Catalytic activity and selectivity of prepared catalysts (Fe2O3/ and Fe2O3/AC(KOH)) were investigated for liquid phase aerobic oxidation of primary and secondary alcohols, in a batch reactor, using solvent free condition and/or eco-friendly solvents. The catalysts were characterized by SEM, EDX, XRD, FTIR, TGA/DTA, and surface area and pore size analysis. Experimental data revealed that Fe2O3/AC(KOH) was an efficient catalyst for the oxidation (dehydrogenation) of alcohol while was found to show catalytic activity for both dehydration and dehydrogenation of alcohols. The catalysts were recycled by simple filtration, and used several times without any loss of catalytic activity.
Cite this paper: Sadiq, M. ,  , R. , Hussain, S. and Zamin, G. (2014) Efficiency of Iron Supported on Porous Material (Prepared from Peanut Shell) for Liquid Phase Aerobic Oxidation of Alcohols. Modern Research in Catalysis, 3, 35-48. doi: 10.4236/mrc.2014.32006.
References

[1]   Puzari, A. and Baruah, J.B. (2002) Organic Oxidative Reactions Mediated by Copper. Journal of Molecular Catalysis A: Chemical, 187, 149-162. http://dx.doi.org/10.1016/S1381-1169(02)00273-X

[2]   Gates, B.C. (1992) Catalytic Chemistry. John Wiley and Sons, New York.

[3]   Mercera, P.D.L., Van Ommen, J.G., Doesburg, E.B.M., Burggraaf, A.J. and Ross, J.R.H. (1990) Zirconia as a Support for Catalysts: Evolution of the Texture and Structure on Calcination in Air. Applied Catalysis, 57, 127-148.
http://dx.doi.org/10.1016/S0166-9834(00)80728-9

[4]   Mercera, P.D.L., Van Ommen, J.G., Doesburg, E.B.M., Burggraaf, A.J. and Ross, J.R.H. (1991) Stabilized Tetragonal Zirconium Oxide as a Support for Catalysts Evolution of the Texture and Structure on Calcination in Static Air. Applied Catalysis, 78, 79-96. http://dx.doi.org/10.1016/0166-9834(91)80090-J

[5]   Srinivasan, R., Taulbee, D. and Davis, B.H. (1991) The Effect of Sulfate on the Crystal Structure of Zirconia. Catalysis letters, 9, 1-7. http://dx.doi.org/10.1007/BF00769074

[6]   Rafelt, J.S. and Clark, J.H. (2000) Recent Advances in the Partial Oxidation of Organic Molecules Using Heterogeneous Catalysis. Catalysis Today, 57, 33-44. http://dx.doi.org/10.1016/S0920-5861(99)00308-9

[7]   Kluytmans, J.H.J., Markusse, A.P., Kuster, B.F.M., Marin, G.B. and Schouten, J.C. (2000) Engineering Aspects of the Aqueous Noble Metal Catalysed Alcohol Oxidation. Catalysis Today, 57, 143-155.
http://dx.doi.org/10.1016/S0920-5861(99)00316-8

[8]   Dimitratos, N., Lopez-Sanchez, J.A., Morgan, D., Carley, A.F., Tiruvalam, R., Kiely, C.J., Bethell, D. and Hutchings, G.J. (2009) Solvent-Free Oxidation of Benzyl Alcohol Using Au-Pd Catalysts Prepared by Sol Immobilisation. Physical Chemistry Chemical Physics, 11, 5142-5153. http://dx.doi.org/10.1039/b900151b

[9]   Dmitry, V.B., Alexei, A.L., Stan, T.K. and Pawel, K.P. (2005) Selective Oxidation of Alcohols in a Continuous Multifunctional Reactor: Ruthenium Oxide Catalysed Oxidation of Benzyl Alcohol. Applied Catalysis A: General, 288, 175-184.

[10]   Prakash, S., Charan, C., Singh, A.K. and Shahi, V.K. (2013) Mixed Metal Nanoparticles Loaded Catalytic Polymer Membrane for Solvent Free Selective Oxidation of Alcohol to Benzyldehyde in a Reactor. Applied Catalysis B: Environmental, 132-133, 62-69. http://dx.doi.org/10.1016/j.apcatb.2012.11.001

[11]   Chen, Y.T., Wang, H.P., Liu, C.-J., Zeng, Z.Y., Zhang, H., Zhou, C.M., Jia, X.L. and Yang, Y.H. (2012) Formation of Monometallic Au and Pd and Bimetallic Au-Pd Nanoparticles Confined in Mesopores via Argloe-Discharge Plasma Reduction and Their Catalytic Applications in Aerobic Oxidation of Benzyl Alcohol. Journal of Catalysis, 289, 105-117. http://dx.doi.org/10.1016/j.jcat.2012.01.020

[12]   Tang, Q.T., Wu, C.M., Qiao, R., Chen, Y.T. and Yang, Y.H. (2011) Catalytic Performances of Mn-Ni Mixed Hydroxide Catalysts in Liquid-Phase Benzyl Alcohol Oxidation Using Molecular Oxygen. Applied Catalysis A: General, 403, 136-141.

[13]   Dina, D.J.D., Ntieche, A.R., Ndi, J.N. and Ketcha, J.M. (2012) Adsorption of Acetic Acid onto Activated Carbons Obtained from Maize Cobs by Chemical Activation with Zinc Chloride (ZnCl2). Research Journal of Chemical Sciences, 2, 42-49.

[14]   Cook, G.K. and Mayer, J.M. (1994) C-H Bond Activation by Metal Oxo Species: Oxidation of Cyclohexane by Chromyl Chloride. Journal of the American Chemical Society, 116, 1855-1867. http://dx.doi.org/10.1021/ja00084a029

[15]   Basset, J.M., Vidaurre, A. and Graydon, W.F. (1972) Kinetics of Irreversible Chemisorprion: Surface Reduction of MnO2 by Cyclohexane, Cyclohexene, and 1,3and 1,4-Cyclohexadiene. Journal of Catalysis, 26, 118-126.
http://dx.doi.org/10.1016/0021-9517(72)90041-3

[16]   Balsco, J., Concepcion, P., Nieto, J.M.L. andPerezpariente, J. (1995) Preparation, Characterization, and Catalytic Properties of VAPO-5 for the Oxydehydrogenation of Propane. Journal of Catalysis, 152, 1-17.
http://dx.doi.org/10.1006/jcat.1995.1054

[17]   Kluytmans, J.H.J., Markusse, A.P., Kuster, B.F.M., Marin, G.B. and Schouten, J.C. (2000) Engineering Aspects of the Aqueous Noble Metal Catalysed Alcohol Oxidation. Catalysis Today, 57, 143-155.
http://dx.doi.org/10.1016/S0920-5861(99)00316-8

[18]   Li, T., Wang, S.J., Yu, C.S., Ma, Y.C., Li, K.L. and Lin, L.W. (2011) Direct Conversion of Methane to Methanol over Nano-[Au/SiO2] in [Bmim]Cl Ionic Liquid. Applied Catalysis A: General, 398, 150-154.
http://dx.doi.org/10.1016/j.apcata.2011.03.028

[19]   Nicoletti, J.W. and Whitesides, G.M. (1989) Liquid-Phase Oxidation of 2-Propanol to Acetone by Dioxygen Using Supported Platinum Catalysts. The Journal of Physical Chemistry, 93, 759-767. http://dx.doi.org/10.1021/j100339a050

 
 
Top