IJG  Vol.5 No.3 , March 2014
Contamination Potential of an Urban Mine Tailings Deposit in Central Mexico—A Preliminary Estimation
ABSTRACT

This study consisted of a geochemical analysis of the Dos Carlos tailings’ deposit located in the Mining District of Pachuca-Real del Monte in the state of Hidalgo, Central Mexico. The goal of the study was to determine the potential effects of this deposit on the environment and health of the population of the metropolitan area of Pachuca. Sampling was conducted from the top to the base of two raised sections at opposite ends of the deposit, and macroscopic features (profiles A and B) of these deposits were evaluated. Subsequently, mineralogical analyses of the collected samples were performed using X-ray diffraction and physico-chemical analysis of the leachates. The results were compared with the maximum permissible limits established by different national and international standards for drinking water and hazardous waste. In addition, geochemical modeling was conducted using PHREEQC to calculate the distribution of aqueous species, ionic activities and saturation indices.(For more information, please refer to the PDF.)


Cite this paper
Lizárraga-Mendiola, L. , Ángeles-Chávez, D. , Blanco-Piñón, A. , Ramírez-Cardona, M. , Olguín-Coca, F. and González-Sandoval, M. (2014) Contamination Potential of an Urban Mine Tailings Deposit in Central Mexico—A Preliminary Estimation. International Journal of Geosciences, 5, 296-312. doi: 10.4236/ijg.2014.53030.
References
[1]   [1] Martín-Romero, F. (2004) Procesos geoquímicos que controlan la movilidad en metales y metaloides en jales de sulfuros metálicos “El Fraile”, Taxco-Guerrero: México, D.F.,[Geochemical Processes That Control Mobility in Metals and Non-Metals in the Metallic Sulfide Tailings of “El Fraile”, Taxco-Guerrero: Mexico, D.F]. Universidad Nacional Autónoma de México, Instituto de Geofísica, Tesis de Doctorado, 200 p.

[2]   Méndez-Ramírez, M. and Armienta-Hernández, M.A. (2012) Distribución de Fe, Zn, Pb, Cu, Cd y As originada por residuos mineros y aguas residuales en un transecto del Río Taxco en Guerrero, México [Distribution of Fe, Zn, Pb, Cu, Cd, and As Caused by Mining Waste and Wastewater in a Transect of the Taxco River in Guerrero, Mexico]. Revista Mexicana de Ciencias Geológicas, 29, 450-462.

[3]   Ruiz-Huerta, E.A. and Armienta-Hernández, M.A. (2012) Acumulación de arsénico y metales pesados en maíz en suelos cercanos a jales o residuos mineros [Accumulation of Arsenic and Heavy Metals in Corn in Soils near Tailings or Mining Waste]. Revista Internacional de Contaminación Ambiental, 28, 103-117.

[4]   García-Meza, J.V., Ramos, E., Carrillo-Chávez, A. and Durán-de-Bazúa, C. (2004) Mineralogical and Chemical Characterization of Historical Mine Tailings from the Valenciana Mine, Guanajuato, Mexico: Environmental Implications. Bulletin of Environmental Contamination and Toxicology, 72, 170-177. http://dx.doi.org/10.1007/s00128-003-0256-1

[5]   Morton-Bermea, O., Carrillo-Chávez, A., Hernández, E., González-Partida, E. (2004) Determination of Metals for Leaching Experiments of Mine Tailings: Evaluation of the Potential Environmental Hazard in the Guanajuato Mining District, Mexico. Bulletin of Environmental Contamination and Toxicology, 73, 770-776.
http://dx.doi.org/10.1007/s00128-004-0492-z

[6]   Mendoza-Amézquita, E., Armienta-Hernández, M.A., Ayora, C., Soler, A. and Ramos-Ramírez, E. (2006) Potencial de lixiviación de elementos traza en jales de las minas La Asunción y Las Torres, en el Distrito Minero de Guanajuato, México [Leaching Potential of Trace Elements in Mine Tailings of the La Asunción and Las Torres Mines in the Mining District of Guanajuato, Mexico]. Revista Mexicana de Ciencias Geológicas, 23, 75-83.

[7]   Ramos-Arroyo, Y.R. and Siebe-Grabach, C.D. (2006) Estrategia para identificar jales con potencial de riesgo ambiental en un distrito minero: estudio de caso en el Distrito de Guanajuato, México [Strategy for Identifying the Environmental Risk of Tailings in a Mining District: A Case Study in the District of Guanajuato, Mexico]. Revista Mexicana de Ciencias Geológicas, 23, 54-74.

[8]   Gutiérrez-Ruiz, M., Romero, F.M. and González-Hernández, G. (2007) Soils and Sediments Affected by the Dispersion of Metal Sulfide from Inactive Tailings in the Santa Barbara Mining Area, Chihuahua, México. Revista Mexicana de Ciencias Geológicas, 24, 170-184.

[9]   González-Sandoval, M.R., Sánchez-Tovar, S., Márquez-Herrera, C., Lizárraga-Mendiola, L. and Durán-Domínguez, M.C. (2008) Oxidación de jales ricos en pirita en un reactor a escala de banco [Oxidation of Pyrite-Rich Tailings in a Bench Scale Reactor]. Edición Especial de la Revista Latinoamericana de Recursos Naturales, 4, 130-138.

[10]   Lizárraga-Mendiola, L., Durán-Domínguez, M.C. and González-Sandoval, M.R. (2008) Environmental Assessment of an Active Tailings Pile in the State of Mexico (Central Mexico). Research Journal of Environmental Sciences, 2, 197-208. http://dx.doi.org/10.3923/rjes.2008.197.208

[11]   Lizárraga-Mendiola, L., González-Sandoval, M.R., Durán-Domínguez, M.C. and Márquez-Herrera, C. (2009) Geochemical Behavior of Heavy Metals in a Zn-Pb-Cu Mining Area in the State of Mexico (Central Mexico). Environmental Monitoring and Assessment, 155, 355-372. http://dx.doi.org/10.1007/s10661-008-0440-1

[12]   Luna-Celis, L., Martín-Romero, F., Villasenor-Cabral, M.G. and Gutiérrez-Ruíz, M. (2008) Mineralogía y geoquímica de los jales de la Unidad Minera Charcas, San Luis Potosí [Mineralogy and Geochemistry of the Tailings from the Charcas Mining Unit, San Luis Potosí]. Boletín de Mineralogía, 18, 57-58.

[13]   Méndez, M. and Armienta, M.A. (2003) Arsenic Phase Distribution in Zimapán Mine Tailings, Mexico. Geofísica Internacional, 42, 131-140.

[14]   Asociación de Ingenieros de Minas, Metalurgistas y Geólogos de México (AIMMGM) (1961) La planta de beneficio de los jales de la Comisión del Fomento Minero en Santa Julia, Pachuca, Hidalgo[The processing plant of the tailings of the Fomento Mining Commission at Santa Julia, Pachuca, Hidalgo]. Gto., Memoria de la IV Convención Nacional de la AIMMGM, Guanajuato.

[15]   Soto-Oliver, N. (1982) La minería: el distrito minero Pachuca-Real del Monte a través de la historia. Pachuca de Soto, México [Mining: The Pachuca-Real del Monte Mining District throughout History. Pachuca de Soto, Mexico]. Gobierno del Estado de Hidalgo, Coordinación de Turismo, Cultura y Recreación.

[16]   Comisión de Fomento Minero (CFM) (1959) Planta de Tratamiento de Jales Unidad “Santa Julia”, Pachuca, Hidalgo [Tailings Treatment Plant of the “Santa Julia” Unit, Pachuca, Hidalgo]. Boletín Núm, México, D.F., 6.

[17]   Geyne, A.R., Fries Jr., C., Segerstrom, K., Black, R.F. and Wilson, I.F. (1963) Geology and Mineral Deposits of the Pachuca-Real del Monte District, State of Hidalgo, México. Consejo de Recursos Minerales, México, D.F., Publicación 5E.

[18]   Moreno-Tovar, R. (2006) Evaluación geoquímico ambiental de residuos (jales) de mineralizaciones polimetálicas del Estado de Hidalgo, México [Environmental Geochemical Assessment of Waste (Tailings) of Polymetallic Mineralization of the State of Hidalgo, Mexico]. Universidad Autónoma de San Luis Potosí, Facultad de Ingeniería, Tesis de Doctorado.

[19]   Hernández-ávila, J. (2009) Cinética de molienda y recuperación de Ag mediante procesos convencionales y no convencionales de las escombreras de la industria minero-metalúrgica del estado de Hidalgo [Kinetics of Milling and Recovery of Ag by Means of Conventional and Non-Conventional Processes from Slurries from the Mining-Metallurgical Industry of the State of Hidalgo]. Hidalgo, México, Universidad Autónoma del Estado de Hidalgo, Tesis de Doctorado, 150 p.

[20]   Hernández-Acosta, E., Mondragón, R.E., Cristobal, A.D., Rubinos, P.J.E. and Robledo, S.E. (2009) Vegetación, residuos de mina y elementos potencialmente tóxicos de un jal de Pachuca, Hidalgo, México [Vegetation, Mine Waste and Potentially Toxic Elements of Tailings from Pachuca, Hidalgo, Mexico]. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 15, 109-114.

[21]   Koeppen, W. (1936) Das geographische System der Klimate, Handbuch der Klimatologie [The Geographical System of the Climate, Handbook of Climatology]. Borntraeger, Berlin, Bd. 1, Teil. C.

[22]   García-de-Miranda, E. (1985) Apuntes de climatología: México, D.F. [Notes on Climatology: Mexico, D.F.]. Universidad Nacional Autónoma de México, Instituto de Geografía, 89 p.

[23]   Servicio Meteorológico Nacional (SMN) (2012) Registro del Pronóstico del Tiempo [Record of the Weather Forecast]. Comisión Nacional del Agua, México, D.F. http://smn.cna.gob.mx

[24]   Salas, G.P. (1975) Carta y provincias metalogenéticas de la República Mexicana [Map and Metallogenetic Provinces of Mexico]. México, D.F., Consejo de Recursos Minerales, 21E.

[25]   Dreier, J.E. (2005) The Environment of Vein Formation and Ore Deposition in the Purisima-Colon Vein System, Pachuca Real del Monte District, Hidalgo, Mexico. Economic Geology, 100, 1325-1347.
http://dx.doi.org/10.2113/gsecongeo.100.7.1325

[26]   Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) (2004) Norma Oficial Mexicana que establece el procedimiento para caracterizar los jales, así como las especificaciones y criterios para la caracterización y preparación del sitio, proyecto, construcción, operación y postoperación de presas de jales [Official Mexican Standards that establish the procedure for characterizing tailings, and the specifications and criteria for the characterization and preparation of the site, project, construction, operation and post-operation of tailings dams] (NOM-141-SEMARNAT-2003). Diario Oficial de la Federación, México, D.F., 13 de septiembre de 2004, 54 p.

[27]   Secretaría de Comercio y Fomento Industrial (SCFI) (2006) Norma Oficial Mexicana. Muestreo de suelos para la identificación y la cuantificación de metales y metaloides, entendiendo por éstos el arsénico, berilio, cadmio, cromo hexavalente, mercurio, níquel, plomo, selenio, talio y vanadio [Soil Sampling for the Identification and Quantification of Metals and Metalloids Including Arsenic, Beryllium, Cadmium, Hexavalent Chromium, Mercury, Nickel, Lead, Selenium, Thallium and Vanadium] (NOM-AA-132-SCFI-2006). Diario Oficial de la Federación, 6 de marzo de 2006, México, D.F., 2 p.

[28]   Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) (2006) Norma Oficial Mexicana, que establece las características, el procedimiento de identificación, clasificación y los listados de los residuos peligrosos [Official Mexican Standards that Establish the Procedure for the Identification, Classification and Listing of Hazardous Waste], (NOM-052-SEMARNAT-2005). Diario Oficial de la Federación, 23 de junio de 2006, México, D.F., 22 p.

[29]   Secretaría de Salud (SSA) (2000) Norma Oficial Mexicana. Salud ambiental. Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización [Official Mexican Standards. Environmental health. Water for Human Consumption and Use. Permissible Limits of Quality and Necessary Treatment of the Water for Its Potability] (NOM-127-SSA1-1994). Diario Oficial de la Federación, 22 de noviembre del 2000, México, D.F., 10 p.

[30]   United States Environmental Protection Agency (US EPA) (2009) National Primary Drinking Water Regulations. Washington DC, EPA 816-F-09-004. http://water.epa.gov/drink/contaminants/upload/mcl.pdf

[31]   World Health Organization (WHO). (2011) Guidelines for Drinking-Water Quality. World Health Organization (WHO), Geneva, 564p.

[32]   Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). (1997) Norma Oficial Mexicana que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales [Official Mexican Standard that Establishes Maximum Permissible Limits of Pollutants in Wastewater Discharged into Water and National Property] (NOM-001-SEMARNAT-1996). Diario Oficial de la Federación, 6 de enero de 1997, México, D.F., 35p.

[33]   Parkhurst, D.L. and Appelo, C.A.J. (1999) User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey, Water Resources Investigations Report 99-4259, Washington DC.

[34]   Ball, J.W. and Nordstrom, D.K. (1991) User’s Manual for WATEQ4F, with Revised Thermodynamic Data Base and Test Cases for Calculating Speciation of Major, Trace, and Redox Elements in Natural Waters. U.S. Geological Survey, Open-File Report 91-183, Washington DC, 189 p.

[35]   Drever, J.I. (1988) The Geochemistry of Natural Water. 2nd Edition, Prentice Hall, New York, 437p.

[36]   The World Bank. (2013) Life Expectancy at Birth, Total (Years).
http://data.worldbank.org/indicator/SP.DYN.LE00.IN

[37]   Mondragón-Romero, E. (2008) Caracterización de un jal de mina con fines de restauración ecológica en Pachuca, Hidalgo[Characterization of Mine Tailings for the Purpose of Ecological Restoration in Pachuca, Hidalgo]. Universidad Autónoma Chapingo, tesis de licenciatura, México, D.F., 43p.

[38]   Hillier, S. (2000) Accurate Quantitative Analysis of Clay and Other Minerals in Sandstones by XRD: Comparison of a Rietveld and a Reference Intensity Ratio (RIR) Method and the Importance of Sample Preparation. Clay Minerals, 35, 291-302. http://dx.doi.org/10.1180/000985500546666

[39]   Lee, J.S., Chon, H.T. and Kim, K.W. (2005) Human Risk Assessment of As, Cd, Cu and Zn in the Abandoned Metal Mine Site. Environmental Geochemistry and Health, 27, 185-191. http://dx.doi.org/10.1007/s10653-005-0131-6

[40]   Fall, M., Benzaazoua, M. and Ouellet, S. (2005) Experimental Characterization of the Influence of Tailings Fineness and Density on the Quality of Cemented Paste Backfill. Minerals Engineering, 18, 41-44.

[41]   Wilber, W.G. and Hunter, J.V. (1979) The Impact of Urbanization on the Distribution of Heavy Metals in Bottom Sediments of the Saddle River. Water Resources Bulletin, 15, 790-800.
http://dx.doi.org/10.1111/j.1752-1688.1979.tb00397.x

[42]   Heiskanen, K. (1987) Classification Handbook. Larox, New York.

[43]   Jopony, M., Usup, G. and Mohamed, M. (1987) Particle Size Distribution of Copper Mine Tailings from Lohan Ranau Sabah and Its Relationship with Heavy Metal Content. Pertanika, 10, 37-40.

[44]   Paterson & Cooke Ltd. (2011) Cycloning of Tailing for the Production of Sand as TSF Construction Material. Proceedings of Tailings and Mine Waste 2011, Vancouver, 6-9 November 2011, 11.

[45]   Martin, V., Aubertin, M., Bussière, B., Mbonimpa, M., Dagenais, A.M. and Gosselin, M. (2006) Measurement of Oxygen Consumption and Diffusion in Exposed and Covered Reactive Mine Tailings (Poster). In: R. I. Barnhisel, Ed., The 7th International Conference on Acid Rock Drainage (ICARD), St. Louis, The American Society of Mining and Reclamation (ASMR), 26-30 March 2006.

[46]   Akabzaa, T.M. and Yidana, S.M. (2012) An Integrated Approach to Environmental Risk Assessment of Cumulatively Impacted Drainage Basin from Mining Activities in Southwestern Ghana. Environmental Earth Sciences, 65, 291-312. http://dx.doi.org/10.1007/s12665-011-1090-0

[47]   Das, K.K., Das, S.N. and Dhundasi, S.A. (2008) Nickel, Its Adverse Health Effects & Oxidative Stress. Indian Journal of Medical Research, 128, 412-425.

[48]   Jonathan, M.P., Jayaprakash, M., Srinivasalu, S., Roy, P.D., Thangadurai, N., Muthuraj, S. and Pitchaimani, V.S. (2010) Evaluation of Acid Leachable Trace Metals in Soils around a Five Centuries Old Mining District in Hidalgo, Central Mexico. Water, Air and Soil Pollution, 205, 227-236. http://dx.doi.org/10.1007/s11270-009-0068-y

[49]   United States Environmental Protection Agency (US EPA). (2004) Drinking Water Health Advisory for Manganese. Prepared by U.S. Environmental Protection Agency Office of Water (4304T), Health and Ecological Criteria Division, 20460, Washington DC. http://www.epa.gov/safewater/

[50]   Hakkou, R., Benzaazoua, M. and Bussière, B. (2008) Acid Mine Drainage at the Abandoned Kettara Mine (Morocco): 1. Environmental Characterization. Mine Water and the Environment, 27, 145-159.
http://dx.doi.org/10.1007/s10230-008-0036-6

[51]   Klasa, J., Ruiz-Agudo, E., Wang, L.J., Putnis, C.V., Valsami-Jones, E., Menneken, M. and Putnis, A. (2013) An Atomic Force Microscopy Study of the Dissolution of Calcite in the Presence of Phosphate Ions. Geochimica et Cosmochimica Acta, 117, 115-128. http://dx.doi.org/10.1016/j.gca.2013.03.025

[52]   Liu, X., Lu, X., Sprik, M., Cheng, J., Jan-Meijer, E. and Want, R. (2013) Acidity of Edge Surface Sites of Montmorillonite and Kaolinite. Geochimica et Cosmochimica Acta, 117, 180-190. http://dx.doi.org/10.1016/j.gca.2013.04.008.

[53]   Razo, I., Carrizales, L., Castro, J., Díaz-Barriga, F. and Monroy, M. (2004) Arsenic and Heavy Metal Pollution of Soil, Water and Sediments in a Semi-Arid Climate Mining Area in Mexico. Water, Air, and Soil Pollution, 152, 129-152.
http://dx.doi.org/10.1023/B:WATE.0000015350.14520.c1

[54]   Dold, B. (2005) Basic Concepts of Environmental Geochemistry of Sulfide Mine-Waste. XXIV Curso Latinoamericano de Metalogenia UNESCO-SEG, del 22 de agosto al 2 de septiembre de 2005, Lima, 36p.

[55]   Zhang, J. and Li, X. (1987) Chromium Pollution of Soil and Water in Jinzhou. Chinese Journal of Preventive Medicine, 21, 262-264.

[56]   United States Environmental Protection Agency (US EPA). (1996) Proposed Guidelines for Carcinogen Risk Assessment. EPA/600/P-92/003C. Office of Research and Development, Washington DC.

 
 
Top