IJG  Vol.5 No.3 , March 2014
Feasible Multiple Satellite Mission Scenarios Flying in a Constellation for Refinement of the Gravity Field Recovery
Abstract: Improving the gravity field recovery in terms of error levels and more isotropic noise distribution by adding cross-track and radial information to the satellite observables has been investigated through a number of studies by a variety of satellite constellations, i.e. satellite pairs that orbit the Earth in alternative configurations than the current GRACE (Gravity Recovery And Climate Experiment) gravity mission. This contribution gives for the first time a comparative study considering the recovery of the global gravity field from three constellations flying in satellite pairs in different directions (i.e. along-track, cross-track and radial). The three constellations include: 1) Foursatellite Bender configuration (flying in two pairs) of type along-track observations, 2) Three-satellite GRAPEN (combined GRACE with Pendulum formations) configuration of type cross-alongtrack observations, 3) Four-satellite Cartwheel configuration (flying in two pairs) of type radialalong-track observations. Additionally, a GRACE mission scenario is added as a reference “comparative” mission. The orbits of all satellites are considered to fly with drag-free system, however, realistic white noise has been added to the simulated observations to mimic the error associated with the drag-free measurement. The results are analyzed in the spectral wavelength spectrum of the gravity field up to a spherical harmonics degree of n = 100 and are plotted spatially on earth maps. The results show that the Three-satellite GRAPEN constellation provides, besides its low economically launches, an improved gravity field solution with respect to the Four-satellite Bender and the Four-satellite Cartwheel constellations.
Cite this paper: Elsaka, B. (2014) Feasible Multiple Satellite Mission Scenarios Flying in a Constellation for Refinement of the Gravity Field Recovery. International Journal of Geosciences, 5, 267-273. doi: 10.4236/ijg.2014.53027.

[1]   Sharifi, M., Sneeuw, N. and Keller, W. (2007) Gravity Recovery Capability of Four Generic Satellite Formations. In A. Kilicoglu and R. Forsberg, Eds., Gravity Field of the Earth. General Command of Mapping, S18, 211-216.

[2]   Bender, P.L., Wiese, D. and Nerem, R.S. (2008) A Possible Dual-GRACE Mission with 90 Degree and 63 Degree Inclination Orbits. Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies, ESA/ESTEC, Noordwijk, 23-25 April 2008, 1-6.

[3]   Sneeuw, N., Sharifi, M. and Keller, M. (2008) Gravity Recovery from Formation Flight Missions. In: P. L. Xu, J. N. Liu and A. Dermanis, Eds., VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, 132, 29-34.

[4]   Wiese, D., Folkner, W. and Nerem, R. (2009) Alternative Mission Architectures for a Gravity Recovery Satellite Mission. Journal of Geodesy, 83, 569-581.

[5]   Wiese, D., Nerem, R. and Han, S.-C. (2011) Expected Improvements in Determining Continental Hydrology, Ice Mass Variations, Ocean Bottom Pressure Signals, and Earthquakes Using Two Pairs of Dedicated Satellites for Temporal Gravity Recovery. Journal of Geophysical Research, 116, 405.

[6]   Elsaka, B., Kusche, J. and Ilk, K.-H. (2012) Recovery of the Earth’s Gravity Field from Formation-Flying Satellites: Temporal Aliasing Issues. Advances in Space Research, 50, 1534-1552.

[7]   Iran Pour, S., Reubelt, T. and Sneeuw, N. (2013) Quality Assessment of Sub-Nyquist Recovery from Future Gravity Satellite Missions. Journal of Advances in Space Research, 52, 916-929.

[8]   Elsaka, B., Raimondo, J.-C., Brieden, Ph., Reubelt, T., Kusche, J., Flechtner, F., Iran Pour, S., Sneeuw, N. and Müller, J. (2014) Comparing Seven Candidate Mission Configurations for Temporal Gravity Retrieval through Full-Scale Numerical Simulation. Journal of Geodesy, 88, 31-43.

[9]   Rathke, A., et al. (2011) NG2 Team (2011) Assessment of a Next Generation Gravity Mission to Monitor the Variations of Earth’s Gravity Field. Final Report, ESTEC Contract No.: 22672/09/NL/AF.

[10]   Anselmi, A., Cesare, S., Visser, P., Van Dam, T., Sneeuw, N., Gruber, T., Altes, B., Christophe, B., Cossu, F., Ditmar, P. Murboeck, M., Parisch, M., Renard, M., Reubelt, T., Sechi, G. and Texieira Da Encarnacao, J.G. (2011) NGGM Team (2011) Assessment of a Next Generation Gravity Mission to Monitor the Variations of Earth’s Gravity Field. ESA Contract No. 22643/09/NL/AF, Executive Summary, Thales Alenia Space Report SD-RP-AI-0721.

[11]   Reubelt, T., Sneeuw, N., Iran Pour, S., Hirth, M., Fichter, W., Müller, J., Brieden, Ph., Flechtner, F., Raimondo, J.-C., Kusche, J., Elsaka, B., Gruber, T., Pail, R., Murbock, M., Doll, B., Sand, R., Wang, X., Klein, V., Lezius, M., Danzmann, K., Heinzel, G., Sheard, B., Rasel, E., Gilowski, M., Schubert, C., Schafer, W., Rathke, A., Dittus, H. and Pelivan, I. (2014) Future Gravity Field Satellite Missions. In: F. Flechtner, N. Sneeuw and W.-D. Schuh, Eds., Observation of the System Earth from Space-CHAMP, GRACE, GOCE and Future Missions. Geotechnologien Science Report No. 20, Series “Advanced Technologies in Earth Sciences”, Springer, Berlin, in Press.

[12]   Elsaka, B., Ilk, K.-H. and Kusche, J. (2009) Multiple Simulated Formation Flights for Future Gravity Field Recovery. Geophysical Research Abstracts, 11, 529.

[13]   Massonnet, D. (1998) Roueinterferometrique. French Patent No. 339920D17306RS.

[14]   Thales Alenia Space (2008) System Support to Laser Interferometry Tracking Technology Development for Gravity Field Monitoring. Summary Report, SD-RP-AI-0589.

[15]   Wiese, D. (2011) Optimizing Two Pairs of GRACE-Like Satellites for Recovering Temporal Gravity Variations. PhD Thesis, Department of Aerospace Engineering Sciences, University of Colorado.

[16]   Visser, P.N.A.M., Sneeuw, N., Reubelt, T., Losch, M. and van Dam, T. (2010) Space-Borne Gravimetric Satellite Constellations and Ocean Tides: Aliasing Effects. Geophysical journal International, 181, 789-805.

[17]   Mayer-Gürr, T. (2006) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbogen am Beispiel der Satellitenmissionen CHAMP und GRACE. Ph.D. Thesis, University of Bonn, Bonn.

[18]   Mayer-Gürr, T., Eicker, A., Kurtenbach, E. and Ilk, K.H. (2010) ITG-GRACE: Global Static and Temporal Gravity Field Models from GRACE Data. In: F. Flechtner, Th. Gruber, A. Gntner, M. Mandea, M. Rothacher, T. Schne and J. Wickert, Eds., System Earth via Geodetic-Geophysical Space Techniques, Springer, Berlin, 159-168.