CS  Vol.2 No.2 , April 2011
Nth Order Voltage Mode Active-C Filter Employing Current Controlled Current Conveyor
ABSTRACT
This paper proposes an nth order (where n = 2,3, ,n) voltage mode active-C filter using n number of current controlled current conveyors (CCCIIs) and n number of equal valued grounded capacitors. The proposed topology can implement both band pass and low pass responses without alteration of any components. The filters offer the following important features: use of minimum number of current controlled current conveyors (CCCIIs) and passive components, no matching constraint, use of all grounded capacitors and absence of external resistor suitable for integration, cut off frequency can easily be electronically adjusted using AMS 0.35 µm CMOS technology. PSPICE simulation results of third order band pass and low pass responses are provided. The results are found to agree well with the theory.

Cite this paper
nullA. Ranjan and S. Paul, "Nth Order Voltage Mode Active-C Filter Employing Current Controlled Current Conveyor," Circuits and Systems, Vol. 2 No. 2, 2011, pp. 85-90. doi: 10.4236/cs.2011.22013.
References
[1]   C. Toumazou, F. J. Lidgey and D. G. Haigh, “Analogue IC Design: The Current-Mode Approach,” Peter Peregrinus Ltd, London, 1990.

[2]   G. Ferri and N. C. Guerrini, “Low-Voltage Low-Power CMOS Current Conveyors,” Kluwer Academic Publishers, London, 2003.

[3]   A. Fabre, O. Saaid and F. C. Boucheron, “Current Controlled Band Pass Filter Based on Translinear Conveyors,” Electronics Letters, Vol. 31, No. 20, 1995, pp. 1727-1728. doi:10.1049/el:19951225

[4]   H. Bar-thelemy and A. Fabre, “A Second—Generation Current Con-trolled Conveyor with Negative Intrinsic Resistance,” IEEE Transactions on Circuit Systems-I, Vol. 49, No. 1, 2002, pp. 63-65. doi:10.1109/81.974875

[5]   E. Altuntas and A. Toker, “Realization of Voltage and Current Mode KHN Biquads Using CCCIIs,” International Journal of Electronics and Com-munication, Vol. 56, No. 1, 2002, pp. 45-49. doi:10.1078/1434-8411-54100071

[6]   C. M. Chang, “Multi-function Biquardratic Filters Using Current Conveyors,” IEEE Transactions on Circuit Systems-II, Vol. 44, No. 11, 1997, pp. 956-958. doi:10.1109/82.644049

[7]   J. W. Horng, “High-Input Im-pedance Voltage-Mode Universal Biquardratic Filter Using Three Plus-Type CCIIs,” IEEE Transactions on Circuit Sys-tems-II, Analog and Digital Signal Processing, Vol. 48, No. 10, 2001, pp. 996-997.

[8]   A. K. Singh and R. Senani, “A New Four-Cc-Based Configuration for Realizing a Voltage-Mode Biquad Filters,” Journal of Circuits, Systems and Computers, Vol. 11, No. 3, 2002, pp. 213-218. doi:10.1142/S0218126602000434

[9]   Y. H. Wang and C. T. Lee, “Versatile Insensitive Current-Mode Universal Biquad Implementation Using Current Conveyors,” IEEE Transactions on Circuit Systems-II, Analog and Digital Signal Processing, Vol. 48, No. 4, 2001, pp. 409-413. doi:10.1109/82.933806

[10]   M. Koksal and M. Sagbas, “A Versatile Signal Flow Graph Realization of a General Current Transfer Function,” AEU-International Journal of Electronics and Communication, Vol. 62, No. 1, 2008, pp. 33-40. doi:10.1016/j.aeue.2007.02.003

[11]   M. Altun, H. Kuntman, S. Minaei and O. K. Sayin, “Realization of Nth-Order Current Transfer Employing ECCIIs and Application Examples,” In-ternational Journal of Electronics, Vol. 96, No. 11, 2004, pp. 1115-1126. doi:10.1080/00207210903269047

[12]   A. A. Hussain, A. N. Tasadduq and A.-E. Osama, “Digitally Programmable High-Order Current-Mode Universal Filteres,” Analog Inte-grated Circuits and Signal Proce- ssing, Vol. 67, No. 2, 2010, pp. 179-187.

[13]   H. Kuntaman, O. Cicekoglu and S. Ozcan, “Realization of Current-Mode Third Order Butterworth Filters Employing Equal Valued Passive Elements and Unity Gain Buffers,” Analog Integrated Circuits and Signal Proce- ssing, Vol. 30, No. 3, 2002, pp. 253-256. doi:10.1023/A:1014488619452

[14]   E. Yuce and S. Minaei, “On the Realization of High-Order Current Mode Filter Em-ploying Current Controlled Conveyors,” Computers and Elec-trical Engineering, Vol. 34, No. 3, 2008, pp. 165-172. doi:10.1016/j.compeleceng.2007.04.001

[15]   E. O. Gunes and F. Anday, “Realization of Nth-Order Voltage Transfer Function Using CCII+,” Electronics Letters, Vol. 31, No. 13, 1995, pp. 1022-1023. doi:10.1049/el:19950751

[16]   C. Acar, “Nth-Order Low Pass Voltage Transfer Function Synthesis Using CCII+s: Sig-nal-Flow Graph Approach,” Electronics letters, Vol. 32, No. 3, 1996, pp.159-160. doi:10.1049/el:19960136

[17]   C. Acar and S. Ozoguz, “High-Order Voltage Transfer Function Synthesis Using CCII+ Based Unity Gain Current Amplifiers,” Electron-ics letters, Vol. 32, No. 22, 1996, pp. 2030-2031. doi:10.1049/el:19961359

[18]   J. Zaho, J. G. Ziang and J. N. Liu, “Design of Tunable Biquadratic Filters Employing CCCIIs: State Variable Block Diagram Approach,” Analog Integrated Circuits and Signal Processing, Vol. 62, No. 3, 2010, pp.397-406. doi:10.1007/s10470-009-9348-0

[19]   E. S. Erdo-gan, R. O. Topaloglu, H. Kuntaman and O. Cicekoglu, “New Current Mode Special Function Continuous-Time Active Filters Employing Only OTAs and OPAMPs,” International Journal of Electronics, Vol. 91, No. 6, 2004, pp. 345-359. doi:10.1080/002072140410001695237

 
 
Top