MSA  Vol.5 No.4 , March 2014
Synthesis of Zirconia Oxide (ZrO2) Nanofibers on Zirconnia Substrates by Ultrasonic Spray Pyrolysis
ABSTRACT

Zirconia oxide (ZrO2) nanofibers were synthesized using Phosphorus/water mixture as catalyst by ultrasonic spray pyrolysis CVD on the zirconia substrate at 900°C for 1 h in N2 gas. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) examinations show that all the synthesized nanofibers have uniform surface morphology and their diameters are in the range of 100 nm. The HRTEM selected-area electron diffraction pattern (SAED) shows that crystalline ZrO2 phase exist in the nanofibers, and the energy-dispersive x-ray spectroscopy (EDS) results show that the elements of Zr and O are uniformly distributed across the nanofiber matrix. The phosphorus atoms corroded the entire Zirconia substrate surface, and the Zirconia-Phosphorus liquid-catalyzed the solid-liquid-solid mechanism is proposed to explain the growth of the nanofibers.


Cite this paper
Zhang, J. , Li, W. and Tanji, T. (2014) Synthesis of Zirconia Oxide (ZrO2) Nanofibers on Zirconnia Substrates by Ultrasonic Spray Pyrolysis. Materials Sciences and Applications, 5, 193-198. doi: 10.4236/msa.2014.54024.
References
[1]   Jeong, M., Oh, B., Lee, W. and Myoung, J. (2004) Comparative Study on the Characteristics of ZnO Nanowire and Thin Films by Metalorganic Chemical Vapor Deposition (MOCVD). Journal of Crystal Growth, 268, 149-154.
http://dx.doi.org/10.1016/j.jcrysgro.2004.05.019

[2]   Yin, W., Wei, B. and Hu, C. (2009) In Situ Growth of SnO2 Nanowires on the Surface of Au-Coated Sn Grains Using Water-Assisted Chemical Vapor Deposition. Chemical Physics Letters, 471, 11-16.
http://dx.doi.org/10.1016/j.cplett.2009.02.021

[3]   Wei, X. and Shi, F. (2011) Synthesis and Characterization of GaN Nanowires by a Catalyst Assisted Chemical Vapor Deposition. Applied Surface Science, 257, 9931-9934. http://dx.doi.org/10.1016/j.apsusc.2011.06.110

[4]   Pradhan, S.K., Reucroft, P.J., Yang, F. and Dozier, A. (2003) Growth of TiO2 Nanorods by Metalorganic Chemical Vapor Deposition. Journal of Crystal Growth, 256, 83-88. http://dx.doi.org/10.1016/S0022-0248(03)01339-3

[5]   Kim, H.W., Lee, J.W. and Shim, S.H. (2007) Study of Bi2O3 Nanorods Grown Using the MOCVD Technique. Sensors and Actuators B: Chemical, 126, 306-310. http://dx.doi.org/10.1016/j.snb.2007.01.002

[6]   Pavasupree, S., Suzuki, Y., Pivsa-Art, S. and Yoshikawa, S. (2005) Synthesis and Characterization of Nanoporous, Nanorods, Nanowires Metal Oxide. Science and Technology of Advanced Materials, 6, 224-229.
http://dx.doi.org/10.1016/j.stam.2005.02.001

[7]   Bayat, M., Yang, H. and Ko, F. (2011) Electromagnetic Properties of Electrospun Fe3O4/Carbon Composite Nanofibers. Polymer, 52, 1645-1653. http://dx.doi.org/10.1016/j.polymer.2011.01.057

[8]   Tong, L., Zi, F., Guo, X. and Lou, J. (2012) Optical Microfibers and Nanofibers: A Tutorial. Optics Communications, 285, 4641-4647. http://dx.doi.org/10.1016/j.optcom.2012.07.068

[9]   Thurm, G., Schneider, G.A., Bahr, H.A. and Aldinger, F. (2000) Toughness Anisotropy and Damage Behavior of Plasma Sprayed ZrO2 Thermal Barrier Coatings. Surface and Coatings Technology, 123, 147-158.
http://dx.doi.org/10.1016/S0257-8972(99)00528-9

[10]   Sekcuk, A. and Atkison, A. (1997) Elastic Properties of Ceramic Oxides Used in Solid Oxide Fuel Cells. Journal of the European Ceramic Society, 17, 1523-1532. http://dx.doi.org/10.1016/S0955-2219(96)00247-6

[11]   Zhang, R., Zhang, X. and Hu, S. (2006) Nanocrystalline ZrO2 Thin Films as Electrode Materials Using in High Temperature-Pressure Chemical Sensors. Materials Letters, 60, 3170-3174. http://dx.doi.org/10.1016/j.matlet.2006.02.080

[12]   Maiti, C.K., Dalapati, G.K., Chatterjee, S., Samanta, S.K., Varma, S. and Patil, S. (2004) Electrical Properties of High Permittivity ZrO2 Gate Dielectrics on Strained-Si. Solid-State Electronics, 48, 2235-2241.
http://dx.doi.org/10.1016/j.sse.2004.04.012

[13]   Zheng, W.T., Sun, K.Q., Liu, H.M., Liang, Y. and Xu, B.Q. (2012) Nanocomposite Ni/ZrO2: Highly Active and Stable Catalyst for H2 Production via Cyclic Stepwise Methane Reforming Reactions. International Journal of Hydrogen Energy, 37, 11735-11747. http://dx.doi.org/10.1016/j.ijhydene.2012.05.099

[14]   Pandey, A.K. and Biswas, K. (2011) Influence of Sintering Parameters on Tribological Properties of Ceria Stabilized Zirconia Bio-Ceramics. Ceramics International, 37, 257-264. http://dx.doi.org/10.1016/j.ceramint.2010.08.041

[15]   Huang, L., Cao, Z., Meyer, H.M., Liaw, P.K., Garlea, E., Dunlap, J.R., Zhang, T. and He, W. (2011) Responses of Bone-Form Cells on Pre-Immersed Zr-Base Bulk Metallic Glasses: Effect of Composition and Roughness. Acta Biomaterialia, 7, 395-405. http://dx.doi.org/10.1016/j.actbio.2010.08.002

[16]   Dong, W., Lin, F., Liu, C. and Li, M. (2009) Synthesis of ZrO2 Nanowires by Ionic-Liquid Route. Journal of Colloid and Interface Science, 333, 734-740. http://dx.doi.org/10.1016/j.jcis.2009.02.025

[17]   Formo, E., Camargo, P.H.C., Lim, B., Jiang, M. and Xia, Y. (2009) Functionalization of ZrO2 Nanofibers with Pt Nanostructures: The Effect of Surface Roughness on Nucleation Mechanism and Morphology Control. Chemical Physics Letters, 476, 56-61. http://dx.doi.org/10.1016/j.cplett.2009.05.075

[18]   Wagner, R.S. and Ellis, W.C. (1964) Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied Physics Letters, 4, 89-90. http://dx.doi.org/10.1063/1.1753975

[19]   Zhang, J., Khatri, I., Kishi, N., Soga, T. and Jimbo, T. (2009) Synthesis of Carbon Nanofibers from Carbon Particles by Ultrasonic Spray Pyrolysis of Ethanol. IEICE Transactions on Electronics, E92-C, 1432-1437.

 
 
Top